Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Cell Rep ; 43(9): 114657, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39207903

ABSTRACT

SynDLP, a dynamin-like protein (DLP) encoded in the cyanobacterium Synechocystis sp. PCC 6803, has recently been identified to be structurally highly similar to eukaryotic dynamins. To elucidate structural changes during guanosine triphosphate (GTP) hydrolysis, we solved the cryoelectron microscopy (cryo-EM) structures of oligomeric full-length SynDLP after addition of guanosine diphosphate (GDP) at 4.1 Å and GTP at 3.6-Å resolution as well as a GMPPNP-bound dimer structure of a minimal G-domain construct of SynDLP at 3.8-Å resolution. In comparison with what has been seen in the previously resolved apo structure, we found that the G-domain is tilted upward relative to the stalk upon GTP hydrolysis and that the G-domain dimerizes via an additional extended dimerization domain not present in canonical G-domains. When incubated with lipid vesicles, we observed formation of irregular tubular SynDLP assemblies that interact with negatively charged lipids. Here, we provide the structural framework of a series of different functional SynDLP assembly states during GTP turnover.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Guanosine Triphosphate , Guanosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Protein Multimerization , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/chemistry , Synechocystis/metabolism , Dynamins/metabolism , Dynamins/chemistry , Models, Molecular , Hydrolysis , Guanosine Diphosphate/metabolism , Protein Domains , Protein Conformation
2.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 464-473, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38860981

ABSTRACT

Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.


Subject(s)
Archaeal Proteins , Sulfolobus solfataricus , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/chemistry , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Protein Conformation , Binding Sites , RNA, Transfer, Met/chemistry , RNA, Transfer, Met/metabolism
3.
Mol Cell ; 83(8): 1210-1215, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36990093

ABSTRACT

One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.


Subject(s)
raf Kinases , ras Proteins , Dimerization , Consensus , ras Proteins/genetics , ras Proteins/metabolism , raf Kinases/genetics , raf Kinases/metabolism , Lipids , Proto-Oncogene Proteins c-raf/metabolism
4.
Biochem Biophys Rep ; 30: 101263, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35518197

ABSTRACT

The homologous proteins Gas6 and protein S (ProS1) are both natural ligands for the TAM (Tyro3, Axl, MerTK) receptor tyrosine kinases. ProS1 selectively activates Tyro3; however, the precise molecular interface of the ProS1-Tyro3 contact has not been characterised. We used a set of chimeric proteins in which each of the C-terminal laminin G-like (LG) domains of ProS1 were swapped with those of Gas6, as well as a set of ProS1 mutants with novel added glycosylations within LG1. Alongside wildtype ProS1, only the chimera containing ProS1 LG1 domain stimulated Tyro3 and Erk phosphorylation in human cancer cells, as determined by Western blot. In contrast, Gas6 and chimeras containing minimally the Gas6 LG1 domain stimulated Axl and Akt phosphorylation. We performed in silico homology modelling and molecular docking analysis to construct and evaluate structural models of both ProS1-Tyro3 and Gas6-Axl ligand-receptor interactions. These analyses revealed a contact between the ProS1 LG1 domain and the first immunoglobulin domain of Tyro3, which was similar to the Gas6-Axl interaction, and involved long-range electrostatic interactions that were further stabilised by hydrophobic and polar contacts. The mutant ProS1 proteins, which had added glycosylations within LG1 but which were all outside of the modelled contact region, all activated Tyro3 in cells with no hindrance. In conclusion, we show that the LG1 domain of ProS1 is necessary for activation of the Tyro3 receptor, involving protein-protein interaction interfaces that are homologous to those of the Gas6-Axl interaction.

5.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830380

ABSTRACT

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


Subject(s)
Prenylation/drug effects , rac1 GTP-Binding Protein/chemistry , rho GTP-Binding Proteins/chemistry , rho-Specific Guanine Nucleotide Dissociation Inhibitors/chemistry , Amino Acid Sequence/genetics , Guanine Nucleotide Dissociation Inhibitors/chemistry , Guanine Nucleotide Dissociation Inhibitors/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Kinetics , Static Electricity , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics
6.
Front Mol Biosci ; 8: 707439, 2021.
Article in English | MEDLINE | ID: mdl-34307463

ABSTRACT

RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.

7.
RNA Biol ; 17(4): 539-553, 2020 04.
Article in English | MEDLINE | ID: mdl-31994962

ABSTRACT

Assembly of eukaryotic ribosomal subunits is a complex and dynamic process involving the action of more than 200 trans-acting assembly factors. Although recent cryo-electron microscopy structures have provided information on architecture of several pre-ribosomal particles and the binding sites of many AFs, the RNA and protein interactions of many other AFs not captured in these snapshots still remain elusive. RNA helicases are key regulators of structural rearrangements within pre-ribosomal complexes and here we have analysed the eIF4A-like RNA helicase Fal1 and its putative cofactor Sgd1. Our data show that these proteins interact directly via the MIF4G domain of Sgd1 and that the MIF4G domain of Sgd1 stimulates the catalytic activity of Fal1 in vitro. The catalytic activity of Fal1, and the interaction between Fal1 and Sgd1, are required for efficient pre-rRNA processing at the A0, A1 and A2 sites. Furthermore, Sgd1 co-purifies the early small subunit biogenesis factors Lcp5 and Rok1, suggesting that the Fal1-Sgd1 complex likely functions within the SSU processome. In vivo crosslinking data reveal that Sgd1 binds to helix H12 of the 18S rRNA sequence and we further demonstrate that this interaction is formed by the C-terminal region of the protein, which is essential for its function in ribosome biogenesis.


Subject(s)
Nuclear Proteins/metabolism , RNA, Ribosomal, 18S/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , Models, Molecular , Nuclear Proteins/chemistry , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Domains , RNA, Ribosomal, 18S/chemistry , RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry
8.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 12): 738-743, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31797815

ABSTRACT

Kinetoplastida, a class of early-diverging eukaryotes that includes pathogenic Trypanosoma and Leishmania species, display key differences in their translation machinery compared with multicellular eukaryotes. One of these differences involves a larger number of genes encoding eIF4E and eIF4G homologs and the interaction pattern between the translation initiation factors. eIF4G is a scaffold protein which interacts with the mRNA cap-binding factor eIF4E, the poly(A)-binding protein, the RNA helicase eIF4A and the eIF3 complex. It contains the so-called middle domain of eIF4G (MIF4G), a multipurpose adaptor involved in different protein-protein and protein-RNA complexes. Here, the crystal structure of the MIF4G domain of T. cruzi EIF4G5 is described at 2.4 Šresolution, which is the first three-dimensional structure of a trypanosomatid MIF4G domain to be reported. Structural comparison with IF4G homologs from other eukaryotes and other MIF4G-containing proteins reveals differences that may account for the specific interaction mechanisms of MIF4G despite its highly conserved overall fold.


Subject(s)
Bacterial Proteins/chemistry , Eukaryotic Initiation Factor-4G/chemistry , Trypanosoma cruzi/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallization , Crystallography, X-Ray , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Sequence Homology , Trypanosoma cruzi/genetics
9.
Protein Expr Purif ; 153: 53-58, 2019 01.
Article in English | MEDLINE | ID: mdl-30165247

ABSTRACT

Recombinant interferon-α (rIFN-α) has been widely used for treating viral infections. However, the clinical efficacy of unmodified rIFN-α is limited due to small molecular size and rapid clearance from circulation. In this study we developed a novel strategy for half-life extension of porcine IFN-α (PoIFN-α) by fusion to the immunoglobulin (Ig)-binding C2 domain of streptococcal protein G (SPG). The coding sequences for PoIFN-α6 and SPG C2 domain, with a tobacco etch virus (TEV) protease recognition sequence introduced at the 5-end, were cloned into an elastin-like polypeptide (ELP) fusion expression vector and expressed as an ELP-PoIFNα-C2 fusion protein. After optimization of the conditions for soluble protein expression and purification, the fusion protein was purified to more than 90% purity by two rounds of inverse transition cycling (ITC) in the presence of 0.5% Triton X-100. After cleavage with self-aggregating peptide ELK-16-tagged tobacco etch virus protease, the protease was removed by quick centrifugation and PoIFNα-C2 protein was recovered by an additional round of ITC with 98% purity. Western blotting analysis showed that PoIFNα-C2 protein had the specific affinity for pig IgG binding. The antiviral assay showed that PoIFNα-C2 protein had potent antiviral activities against vesicular stomatitis virus and porcine pseudorabies virus. After single intravenous or subcutaneous injection into rats, PoIFNα-C2 protein showed 16- or 4-fold increase in serum half-life with significantly improved bioavailability.


Subject(s)
Bacterial Proteins/pharmacokinetics , Herpesvirus 1, Suid/drug effects , Interferon-alpha/pharmacokinetics , Recombinant Fusion Proteins/pharmacokinetics , Vesiculovirus/drug effects , Amino Acid Motifs , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Biological Assay , Biological Availability , Cell Line , Cloning, Molecular , Elastin/genetics , Elastin/metabolism , Endopeptidases/chemistry , Epithelial Cells/drug effects , Epithelial Cells/virology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Half-Life , Herpesvirus 1, Suid/growth & development , Herpesvirus 1, Suid/immunology , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Peptides/genetics , Peptides/metabolism , Protein Binding , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Swine , Vesiculovirus/growth & development , Vesiculovirus/immunology
10.
Bioinformation ; 13(6): 174-178, 2017.
Article in English | MEDLINE | ID: mdl-28729758

ABSTRACT

Ras GTPases are most prevalent proto-oncogenes in human cancer. Mutations in Ras remain untreatable more than three decades after the initial discovery. At the amino acid level, some residues under physical or functional constraints exhibit correlated mutations also known as coevolving/covariant residues. Revealing intra-molecular co-evolution between amino acid sites of proteins has become an emerging area of research as it enlightens the importance of variable regions. Here, I have identified and analyzed the coevolving residues in the Ras GTP binding domain (G-domain). The obtained covariant residue position data correlate well with the known experimental data on functionally important residues. Therefore, it is of interest to understand these residue co-variations for designing protein engineering experiments and target oncogenic Ras GTPases.

11.
RNA ; 23(7): 1028-1034, 2017 07.
Article in English | MEDLINE | ID: mdl-28389433

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a eukaryotic mRNA degradation pathway involved in surveillance and post-transcriptional regulation, and executed by the concerted action of several trans-acting factors. The SMG1 kinase is an essential NMD factor in metazoans and is associated with two recently identified and yet poorly characterized proteins, SMG8 and SMG9. We determined the 2.5 Å resolution crystal structure of a SMG8-SMG9 core complex from C. elegans We found that SMG8-SMG9 is a G-domain heterodimer with architectural similarities to the dynamin-like family of GTPases such as Atlastin and GBP1. The SMG8-SMG9 heterodimer forms in the absence of nucleotides, with interactions conserved from worms to humans. Nucleotide binding occurs at the G domain of SMG9 but not of SMG8. Fitting the GDP-bound SMG8-SMG9 structure in EM densities of the human SMG1-SMG8-SMG9 complex raises the possibility that the nucleotide site of SMG9 faces SMG1 and could impact the kinase conformation and/or regulation.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Animals , Binding Sites , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/genetics , Crystallography, X-Ray , Models, Molecular , Nonsense Mediated mRNA Decay , Protein Binding , Protein Domains , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger
12.
Biol Chem ; 398(5-6): 637-651, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28002022

ABSTRACT

Crystal structures of small GTP binding protein complexes with their effectors and regulators reveal that one particularly flat side of the G domain that contains helix α4 and the C-terminal helix α5 is practically devoid of contacts. Although this observation seems trivial as the main binding targets are the switch I and II regions opposite of this side, the fact that all interacting proteins, even the largest ones, seem to avoid occupying this area (except for Ran, that does not localize to membranes) is very striking. An orientation with this 'flat' side parallel to the membrane was proposed before and would allow simultaneous interaction of the lipidated C-terminus and positive charges in the α4 helix with the membrane while being bound to effector or regulator molecules. Furthermore, this 'flat' side might be involved in regulatory mechanisms: a Ras dimer that is found in different crystal forms interacts exactly at this side. Additional interface analysis of GTPase complexes nicely confirms the effect of different flexibilities of the GTP and GDP forms. Besides Ran proteins, guanine nucleotide exchange factors (GEFs) bury the largest surface areas to provide the binding energy to open up the switch regions for nucleotide exchange.


Subject(s)
Cell Membrane/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Animals , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Diphosphate/metabolism , Humans , Protein Processing, Post-Translational
13.
FEMS Microbiol Rev ; 40(2): 273-98, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26684538

ABSTRACT

To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Iron/metabolism , Bacteria/pathogenicity , Bacterial Proteins/genetics , Computational Biology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Virulence/genetics
14.
Front Microbiol ; 6: 128, 2015.
Article in English | MEDLINE | ID: mdl-25767465

ABSTRACT

Ras pathway signaling is a critical virulence determinant for pathogenic fungi. Localization of Ras to the plasma membrane (PM) is required for Ras network interactions supporting fungal growth and virulence. For example, loss of Aspergillus fumigatus RasA signaling at the PM via inhibition of palmitoylation leads to decreased growth, altered hyphal morphogenesis, decreased cell wall integrity and loss of virulence. In order to be properly localized and activated, Ras proteins must transit a series of post-translational modification (PTM) steps. These steps include farnesylation, proteolytic cleavage of terminal amino acids, carboxymethylation, and palmitoylation. Because Ras activation drives tumor development, Ras pathways have been extensively studied in mammalian cells as a potential target for anti-cancer therapy. Inhibitors of mammalian Ras interactions and PTM components have been, or are actively being, developed. This review will focus on the potential for building upon existing scaffolds to exploit fungal Ras proteins for therapy, synthesizing data from studies employing both mammalian and fungal systems.

15.
Protein Sci ; 24(4): 545-60, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25492709

ABSTRACT

Computational protein design (CPD) predictions are highly dependent on the structure of the input template used. However, it is unclear how small differences in template geometry translate to large differences in stability prediction accuracy. Herein, we explored how structural changes to the input template affect the outcome of stability predictions by CPD. To do this, we prepared alternate templates by Rotamer Optimization followed by energy Minimization (ROM) and used them to recapitulate the stability of 84 protein G domain ß1 mutant sequences. In the ROM process, side-chain rotamers for wild-type (WT) or mutant sequences are optimized on crystal or nuclear magnetic resonance (NMR) structures prior to template minimization, resulting in alternate structures termed ROM templates. We show that use of ROM templates prepared from sequences known to be stable results predominantly in improved prediction accuracy compared to using the minimized crystal or NMR structures. Conversely, ROM templates prepared from sequences that are less stable than the WT reduce prediction accuracy by increasing the number of false positives. These observed changes in prediction outcomes are attributed to differences in side-chain contacts made by rotamers in ROM templates. Finally, we show that ROM templates prepared from sequences that are unfolded or that adopt a nonnative fold result in the selective enrichment of sequences that are also unfolded or that adopt a nonnative fold, respectively. Our results demonstrate the existence of a rotamer bias caused by the input template that can be harnessed to skew predictions toward sequences displaying desired characteristics.


Subject(s)
Protein Conformation , Protein Engineering/methods , Protein Stability , Protein Structure, Tertiary , Bacterial Proteins , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics
16.
Proteins ; 82(5): 771-84, 2014 May.
Article in English | MEDLINE | ID: mdl-24174277

ABSTRACT

Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain ß1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability.


Subject(s)
Bacterial Proteins/chemistry , Computational Biology/methods , Algorithms , Amino Acid Sequence , Molecular Sequence Data , Protein Stability , Protein Structure, Tertiary , ROC Curve , Structural Homology, Protein , Thermodynamics
17.
Enzymes ; 33 Pt A: 41-67, 2013.
Article in English | MEDLINE | ID: mdl-25033800

ABSTRACT

Ras is a hub protein in signal transduction pathways leading to the control of cell proliferation, migration, and survival and a major target for drug discovery due to the presence of its mutants in about 20% of human cancers. Yet, the discovery of small molecules that can directly interfere with its function has been elusive in spite of intense efforts. This is most likely due to its highly flexible nature and the lack of a well-ordered active site. This chapter contains a discussion of our current understanding of conformational states in Ras-GTP, with focus on a recently discovered allosteric switch mechanism that may promote intrinsic hydrolysis of GTP in the presence of Raf. We discuss the manner in which small molecules are known to affect the equilibrium of states in Ras-GTP and suggest novel strategies to go forward in the search for inhibitors of this master signaling protein.


Subject(s)
Allosteric Site , Protein Conformation , Small Molecule Libraries , ras GTPase-Activating Proteins/chemistry , Animals , Humans , Pharmaceutical Preparations , ras GTPase-Activating Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL