Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Neurosci ; 20(1): 50, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31547806

ABSTRACT

BACKGROUND: Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. RESULTS: Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. CONCLUSIONS: The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.


Subject(s)
Connectome , Pyramidal Tracts/physiology , Spinal Cord/physiology , Animals , Calcium/metabolism , Fluorescent Antibody Technique/methods , Mice , Mice, Transgenic , Motor Cortex/metabolism , Motor Cortex/physiology , Neural Pathways/metabolism , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques/methods , Neurons/physiology , Pyramidal Tracts/metabolism , Spinal Cord/metabolism
2.
MethodsX ; 1: 151-4, 2014.
Article in English | MEDLINE | ID: mdl-26150947

ABSTRACT

Calcium (Ca(2+)) signaling pathways are vital for all eukaryotic cells. It is well established that changes in Ca(2+) concentration can modulate several physiological processes such as muscle contraction, neurotransmitter secretion and metabolic regulation (Giacomello et al. (2007) [1], Rizzuto and Pozzan (2003) [2]). In the complex life cycle of Plasmodium falciparum, the causative agent of human malaria, Ca(2+) is involved in the processes of protein secretion, motility, cell invasion, cell progression and parasite egress from red blood cells (RBCs) (Koyama et al. (2009) [3]). The generation of P. falciparum expressing genetically encoded calcium indicators (GECIs) represents an innovation in the study of calcium signaling. This development will provide new insight on calcium homeostasis and signaling in P. falciparum. In addition, these novel transgenic parasites, PfGCaMP3, is a useful tool for screening and identifying new classes of compounds with anti-malarial activity. This represents a possibility of interfering with signaling pathways controlling parasite growth and development. Our new method differs from previous loading protocols (Garcia et al. (1996) [4]; Beraldo et al. (2007) [5]) since:•It provides a novel method for imaging calcium fluctuations in the cytosol of P. falciparum, without signal interference from the host cell and invasive loading protocols.•This technique could also be expanded for imaging calcium in different subcellular compartments.•It will be helpful in the development of novel antimalarials capable of disrupting calcium homeostasis during the intraerythrocytic cycle of P. falciparum.

SELECTION OF CITATIONS
SEARCH DETAIL