Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; : 107552, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002678

ABSTRACT

Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson Syndrome (CS), an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: co-immunoprecipitation (co-IP); over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9), and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.

2.
Environ Toxicol ; 39(1): 106-119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37665165

ABSTRACT

BACKGROUND: Total flavonoids of Rhizoma drynariae (TFRD) is broadly used in the treatment of orthopedic diseases. Nevertheless, the effects and underlying mechanism of TFRD on tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) remain unclear. METHODS: The ACLR mouse model was established. Hematoxylin and Eosin (HE) staining was used for histological analysis of tendon-bone healing. Western blot was utilized to detect the levels of osteogenic related factors (ALP, OCN, RUNX2). The viability and alkaline phosphatase (ALP) activity of bone mesenchymal stem cells (BMSCs) were determined by Cell Counting Kit-8 (CCK-8) and ALP assays. The interaction of estrogen related receptor alpha (ESRRA), estrogen related receptor beta (ESRRB), and golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (Gga1) was detected by luciferase reporter assays. The levels of important proteins on the TGF-ß/MAPK pathway were measured by western blot. RESULTS: TFRD improved tendon-bone healing, restored biomechanics of ACLR mice and activated the TGF-ß/MAPK pathway. TFRD treatment also enhanced the viability and osteogenic differentiation of BMSCs in vitro. Then, we demonstrated that TFRD targeted ESRRA and ESRRB to transcriptionally activate Gga1 expression. Knockdown of ESRRA, ESRRB, or Gga1 suppressed the viability and osteogenic differentiation of TFRD-induced BMSCs, which was revealed to be restored by Gga1 overexpression. The overexpression of ESRRA, ESRRB, or Gga1 was demonstrated to promote the BMSC viability and osteogenic differentiation. TGF-ß1 treatment can reverse the impact of Gga1 inhibition on osteogenic differentiation in TFRD-induced BMSCs. CONCLUSION: TFRD improves tendon-bone healing in ACLR mouse models and facilitates the osteogenic differentiation of BMSCs through the ERR1/2-Gga1-TGF-ß/MAPK pathway, which might deepen our understanding of the underlying mechanism of TFRD in tendon-bone healing.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Mesenchymal Stem Cells , Polypodiaceae , Mice , Animals , Transforming Growth Factor beta/metabolism , Osteogenesis , Polypodiaceae/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Tendons/metabolism , Cells, Cultured
3.
Cell Rep ; 42(9): 113035, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37616163

ABSTRACT

Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIß (PKD2-PI4KIIIß) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Protein Kinase D2 , Phospholipase C gamma/metabolism , Golgi Apparatus/metabolism , trans-Golgi Network/metabolism , Proto-Oncogene Proteins c-kit/metabolism
4.
PeerJ ; 11: e15673, 2023.
Article in English | MEDLINE | ID: mdl-37551344

ABSTRACT

Background: Infertility is recognized as a common and worrisome problem of human reproduction worldwide. Based on previous studies, male factors account for about half of all infertility cases. Exposure to environmental toxicants is an important contributor to male infertility. Bisphenol A (BPA) is the most prominent toxic environmental contaminant worldwide affecting the male reproductive system. BPA can impair the function of the Golgi apparatus which is important in spermatogenesis. GGA1 is known as Golgi-localized, gamma adaptin ear-containing, ARF-binding protein 1. Previously, it has been shown that GGA1 is associated with spermatogenesis in Drosophila, however, its function in mammalian spermatogenesis remains unclear. Methods: Gga1 knockout mice were generated using the CRISPR/Cas9 system. Gga1-/- male mice and wild-type littermates received intraperitoneal (i.p.) injections of BPA (40 µg/kg) once daily for 2 weeks. Histological and immunofluorescence staining were performed to analyze the phenotypes of these mice. Results: Male mice lacking Gga1 had normal fertility without any obvious defects in spermatogenesis, sperm count and sperm morphology. Gga1 ablation led to infertility in male mice exposed to BPA, along with a significant reduction in sperm count, sperm motility and the percentage of normal sperm. Histological analysis of the seminiferous epithelium showed that spermatogenesis was severely disorganized, while apoptotic germ cells were significantly increased in the Gga1 null mice exposed to BPA. Our findings suggest that Gga1 protects spermatogenesis against damage induced by environmental pollutants.


Subject(s)
Adaptor Proteins, Vesicular Transport , Infertility, Male , Sperm Motility , Animals , Male , Mice , Infertility, Male/chemically induced , Semen , Spermatogenesis/genetics , Spermatozoa/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism
5.
FEBS Open Bio ; 11(2): 367-374, 2021 02.
Article in English | MEDLINE | ID: mdl-33206455

ABSTRACT

The Golgi-localized, gamma-ear containing, ADP-ribosylation factor-binding proteins (GGAs 1, 2, and 3) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) at the Golgi and play a role, along with adaptor protein complex 1 (AP-1), in the sorting of newly synthesized lysosomal hydrolases to the endolysosomal system. However, the relative importance of the two types of coat proteins in this process is still unclear. Here, we report that inactivation of all three GGA genes in HeLa cells decreased the sorting efficiency of cathepsin D from 97% to 73% relative to wild-type, with marked redistribution of the cation-independent MPR from peripheral punctae to the trans-Golgi network. In comparison, GNPTAB-/- HeLa cells with complete inactivation of the mannose 6-phosphate pathway sorted only 20% of the cathepsin D. We conclude that the residual sorting of cathepsin D in the GGA triple-knockout cells is mediated by AP-1.


Subject(s)
Adaptor Protein Complex 1/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cathepsin D/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Gene Knockout Techniques , HeLa Cells , Humans , Lysosomes/enzymology , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , trans-Golgi Network/metabolism
6.
Cell Chem Biol ; 26(9): 1253-1262.e5, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31257182

ABSTRACT

Plasmodium parasites undergo an obligatory and asymptomatic developmental stage within the liver before infecting red blood cells to cause malaria. The hijacked host pathways critical to parasite infection during this hepatic phase remain poorly understood. Here, we implemented a forward genetic screen to identify over 100 host factors within the human druggable genome that are critical to P. berghei infection in hepatoma cells. Notably, we found knockdown of genes involved in protein trafficking pathways to be detrimental to parasite infection. The disruption of protein trafficking modulators, including COPB2 and GGA1, decreases P. berghei parasite size, and an immunofluorescence study suggests that these proteins are recruited to the Plasmodium parasitophorous vacuole in infected hepatocytes. These findings reveal that various host intracellular protein trafficking pathways are subverted by Plasmodium parasites during the liver stage and provide new insights into their manipulation for growth and development.


Subject(s)
Malaria/drug therapy , Malaria/genetics , Plasmodium berghei/drug effects , Adaptor Proteins, Vesicular Transport/genetics , Animals , Carcinoma, Hepatocellular/genetics , Cell Line , Coatomer Protein/genetics , Communicable Diseases , Hep G2 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/parasitology , Mice , Parasites , Plasmodium/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Protein Transport/genetics
7.
J Virol ; 92(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30232182

ABSTRACT

The assembly of new herpes simplex virus 1 (HSV-1) particles takes place in the nucleus. These particles then travel across the two nuclear membranes and acquire a final envelope from a cellular compartment. The contribution of the cell to the release of the virus is, however, little known. We previously demonstrated, using a synchronized infection, that the host protein kinase D and diacylglycerol, a lipid that recruits the kinase to the trans-Golgi network (TGN), promote the release of the virus from that compartment. Given the role this cellular protein plays in the herpes simplex virus 1 life cycle and the many molecules that modulate its activity, we aimed to determine to what extent this virus utilizes the protein kinase D pathway during a nonsynchronized infection. Several molecular protein kinase D (PKD) regulators were targeted by RNA interference and viral production monitored. Surprisingly, many of these modulators negatively impacted the extracellular release of the virus. Overexpression studies, the use of pharmacological reagents, and assays to monitor intracellular lipids implicated in the biology of PKD suggested that these effects were oddly independent of total intracellular diacylglycerol levels. Instead, mapping of the viral intermediates by electron microscopy suggested that some of these modulators could regulate distinct steps along the viral egress pathway, notably nuclear egress. Altogether, this suggests a more complex contribution of PKD to HSV-1 egress than originally anticipated and new research avenues to explore.IMPORTANCE Viruses are obligatory parasites that highjack numerous cellular functions. This is certainly true when it comes to transporting viral particles within the cell. Herpesviruses share the unique property of traveling through the two nuclear membranes by subsequent budding and fusion and acquiring their final envelope from a cellular organelle. Albeit disputed, the overall evidence from many laboratories points to the trans-Golgi network (TGN) as the source of that membrane. Moreover, past findings revealed that the host protein kinase D (PKD) plays an important role at that stage, which is significant given the known implication of that protein in vesicular transport. The present findings suggest that the PKD machinery not only affects the late stages of herpes simplex virus I egress but also modulates earlier steps, such as nuclear egress. This opens up new means to control these viruses.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Calcium-Binding Proteins/metabolism , Eye Proteins/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Membrane Proteins/metabolism , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Virus Release , Active Transport, Cell Nucleus , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Adaptor Proteins, Vesicular Transport/genetics , Animals , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Cell Nucleus/metabolism , Chlorocebus aethiops , Eye Proteins/antagonists & inhibitors , Eye Proteins/genetics , Herpes Simplex/genetics , Herpes Simplex/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Transport , Tumor Cells, Cultured , Vero Cells , trans-Golgi Network
8.
Biochem Biophys Res Commun ; 450(1): 160-5, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24866237

ABSTRACT

Alzheimer's disease (AD) and a rare inherited disorder of cholesterol transport, Niemann-Pick type C (NPC) share several similarities including aberrant APP processing and increased Aß production. Previously, we have shown that the AD-like phenotype in NPC model cells involves cholesterol-dependent enhanced APP cleavage by ß-secretase and accumulation of both APP and BACE1 within endocytic compartments. Since retrograde transport of BACE1 from endocytic compartments to the trans-Golgi network (TGN) is regulated by the Golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (GGA1), we analyzed in this work a potential role of GGA1 in the AD-like phenotype of NPC1-null cells. Overexpression of GGA1 caused a shift in APP processing towards the non-amyloidogenic pathway by increasing the localization of APP at the cell surface. However, the observed effect appear to be independent on the subcellular localization and phosphorylation state of BACE1. These findings show that the AD-like phenotype of NPC model cells can be partly reverted by promoting a non-amyloidogenic processing of APP through the upregulation of GGA1 supporting its preventive role against AD.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Carrier Proteins/metabolism , Membrane Glycoproteins/metabolism , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Peptide Fragments/metabolism , Animals , CHO Cells , Carrier Proteins/genetics , Cricetulus , Humans , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/genetics , Niemann-Pick C1 Protein , Subcellular Fractions/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL