Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
Fish Shellfish Immunol ; 153: 109836, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39147177

ABSTRACT

Pseudomonas plecoglossicida is one of most important pathogenic bacterial species in large yellow croaker and several other commercially valuable fish species. In our previous study, a GacS deficient mutant (ΔgacS) was constructed and its virulence showed substantially attenuated. In present study, the safety, immunogenicity and protective effect of the ΔgacS were evaluated in large yellow croaker as a live-attenuated vaccine candidate. It was shown that the ΔgacS strain exhibited good safety to large yellow croaker and there was no mortality or clinical symptoms observed in all fish that infected by ΔgacS strain with the doses range from 2 × 105~107 CFU per fish via intraperitoneal injection (IP) or immersion (IM), and almost all bacteria were cleaned up in the spleen of the fish at 14-day post infection. Specific antibodies could be detected at 7-day and 14-day post infection by direct agglutination method, and the valences of antibodies and bactericidal activities of the serum were significant increased with vaccination doses and vaccination time. Moreover, the expressions of some molecules and cytokines involved in specific immune responses were detected in the ΔgacS strain immunization group and control group. After challenged by the wild-type (WT) strain XSDHY-P, the relative percentage survival (RPS) showed highly correlated with the immunized dosage regardless of vaccination methods. It showed that the RPS of the IP groups were 39.47 %, 57.89 %, 71.05 % with the immune dosage in a descending order, respectively, and the RPS of the IM groups were 26.31 %, 36.84 %, 76.31 % with the immune dosage in a descending order, respectively. In summary, the ΔgacS strain exhibited safety and good protective effect to large yellow croaker and was a potential live vaccine candidate.


Subject(s)
Fish Diseases , Perciformes , Pseudomonas Infections , Pseudomonas , Vaccines, Attenuated , Animals , Fish Diseases/immunology , Fish Diseases/prevention & control , Perciformes/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Pseudomonas Infections/veterinary , Pseudomonas Infections/prevention & control , Pseudomonas Infections/immunology , Pseudomonas/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Pseudomonas Vaccines/immunology , Pseudomonas Vaccines/genetics , Immunogenicity, Vaccine
2.
Microbiol Res ; 287: 127868, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39126862

ABSTRACT

Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Pseudomonas , Quorum Sensing , Quorum Sensing/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas/metabolism , Pseudomonas/genetics , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Phloroglucinol/metabolism , Phloroglucinol/analogs & derivatives , Acyl-Butyrolactones/metabolism , Phenols/metabolism , Pyrrolnitrin/metabolism , Pyrroles/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Open Reading Frames , Promoter Regions, Genetic , Heterocyclic Compounds, 3-Ring/metabolism
3.
Biology (Basel) ; 13(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927253

ABSTRACT

Compared to pathogens Pseudomonas aeruginosa and P. putida, P. donghuensis HYS has stronger virulence towards Caenorhabditis elegans. However, the underlying mechanisms haven't been fully understood. The heme synthesis system is essential for Pseudomonas virulence, and former studies of HemN have focused on the synthesis of heme, while the relationship between HemN and Pseudomonas virulence were barely pursued. In this study, we hypothesized that hemN2 deficiency affected 7-hydroxytropolone (7-HT) biosynthesis and redox levels, thereby reducing bacterial virulence. There are four hemN genes in P. donghuensis HYS, and we reported for the first time that deletion of hemN2 significantly reduced the virulence of HYS towards C. elegans, whereas the reduction in virulence by the other three genes was not significant. Interestingly, hemN2 deletion significantly reduced colonization of P. donghuensis HYS in the gut of C. elegans. Further studies showed that HemN2 was regulated by GacS and participated in the virulence of P. donghuensis HYS towards C. elegans by mediating the synthesis of the virulence factor 7-HT. In addition, HemN2 and GacS regulated the virulence of P. donghuensis HYS by affecting antioxidant capacity and nitrative stress. In short, the findings that HemN2 was regulated by the Gac system and that it was involved in bacterial virulence via regulating 7-HT synthesis and redox levels were reported for the first time. These insights may enlighten further understanding of HemN-based virulence in the genus Pseudomonas.

4.
Front Plant Sci ; 15: 1347982, 2024.
Article in English | MEDLINE | ID: mdl-38375080

ABSTRACT

GacS/GacA is a widely distributed two-component system playing an essential role as a key global regulator, although its characterization in phytopathogenic bacteria has been deeply biased, being intensively studied in pathogens of herbaceous plants but barely investigated in pathogens of woody hosts. P. savastanoi pv. savastanoi (Psv) is characterized by inducing tumours in the stem and branches of olive trees. In this work, the model strain Psv NCPPB 3335 and a mutant derivative with a complete deletion of gene gacA were subjected to RNA-Seq analyses in a minimum medium and a medium mimicking in planta conditions, accompanied by RT-qPCR analyses of selected genes and phenotypic assays. These experiments indicated that GacA participates in the regulation of at least 2152 genes in strain NCPPB 3335, representing 37.9 % of the annotated CDSs. GacA also controls the expression of diverse rsm genes, and modulates diverse phenotypes, including motility and resistance to oxidative stresses. As occurs with other P. syringae pathovars of herbaceous plants, GacA regulates the expression of the type III secretion system and cognate effectors. In addition, GacA also regulates the expression of WHOP genes, specifically encoded in P. syringe strains isolated from woody hosts, and genes for the biosynthesis of phytohormones. A gacA mutant of NCPPB 3335 showed increased virulence, producing large immature tumours with high bacterial populations, but showed a significantly reduced competitiveness in planta. Our results further extend the role of the global regulator GacA in the virulence and fitness of a P. syringae pathogen of woody hosts.

5.
6.
mBio ; : e0227623, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855599

ABSTRACT

Plasmid conjugation plays an important role in the dissemination of antibiotic-resistance genes. The emergence of multidrug-resistant isolates of Acinetobacter baumannii poses grave challenges in treating infections caused by this notorious nosocomial pathogen. Yet, the composition, functionality, and regulation of conjugative machinery utilized by A. baumannii remain poorly understood. Here, we found that conjugation of the major plasmid pAB3 of A. baumannii is mediated by a type IVB secretion system similar to the Dot/Icm transporter of Legionella pneumophila. Furthermore, the expression of the structural genes of the Dot/Icm-like system is co-regulated with genes involved in central metabolism by the GacS/GacA two-component system in response to various metabolites, including intermediates of the tricarboxylic acid cycle. Loss of GacS/A also severely impaired bacterial virulence. These results establish that A. baumannii coordinates metabolism with plasmid conjugation and virulence by sensing nutrient availability, which may be exploited to develop inhibitory agents for controlling the spread of drug-resistance genes and virulence factors. IMPORTANCE Plasmid conjugation is known to be an energy-expensive process, but our understanding of the molecular linkage between conjugation and metabolism is limited. Our finding reveals that Acinetobacter baumannii utilizes a two-component system to co-regulate metabolism, plasmid transfer, and virulence by sensing reaction intermediates of key metabolic pathways, which suggests that nutrient availability dictates not only bacterial proliferation but also horizontal gene transfer. The identification of Dot/Icm-like proteins as components of a conjugation system involved in the dissemination of antibiotic-resistance genes by A. baumannii has provided important targets for the development of agents capable of inhibiting virulence and the spread of anti-microbial-resistance genes in bacterial communities.

7.
PeerJ ; 11: e15304, 2023.
Article in English | MEDLINE | ID: mdl-37214089

ABSTRACT

Background: Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability. Methods: The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA). Results: All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development. Conclusion: These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins , Humans , Bacterial Proteins/genetics , beta-Lactamases/genetics , Acinetobacter baumannii/genetics , Microbial Sensitivity Tests , Carbapenems/pharmacology
8.
Microbiology (Reading) ; 169(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748579

ABSTRACT

The type VI secretion system (T6SS) is an antimicrobial molecular weapon that is widespread in Proteobacteria and offers competitive advantages to T6SS-positive micro-organisms. Three T6SSs have recently been described in Pseudomonas putida KT2440 and it has been shown that one, K1-T6SS, is used to outcompete a wide range of phytopathogens, protecting plants from pathogen infections. Given the relevance of this system as a powerful and innovative mechanism of biological control, it is critical to understand the processes that govern its expression. Here, we experimentally defined two transcriptional units in the K1-T6SS cluster. One encodes the structural components of the system and is transcribed from two adjacent promoters. The other encodes two hypothetical proteins, the tip of the system and the associated adapters, and effectors and cognate immunity proteins, and it is also transcribed from two adjacent promoters. The four identified promoters contain the typical features of σ70-dependent promoters. We have studied the expression of the system under different conditions and in a number of mutants lacking global regulators. P. putida K1-T6SS expression is induced in the stationary phase, but its transcription does not depend on the stationary σ factor RpoS. In fact, the expression of the system is indirectly repressed by RpoS. Furthermore, it is also repressed by RpoN and the transcriptional regulator FleQ, an enhancer-binding protein typically acting in conjunction with RpoN. Importantly, expression of the K1-T6SS gene cluster is positively regulated by the GacS-GacA two-component regulatory system (TCS) and repressed by the RetS sensor kinase, which inhibits this TCS. Our findings identified a complex regulatory network that governs T6SS expression in general and P. putida K1-T6SS in particular, with implications for controlling and manipulating a bacterial agent that is highly relevant in biological control.


Subject(s)
Pseudomonas putida , Type VI Secretion Systems , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas putida/metabolism , Sigma Factor/genetics , Multigene Family , Gene Expression Regulation, Bacterial
9.
Structure ; 30(9): 1285-1297.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35767996

ABSTRACT

Virulence in Pseudomonas aeruginosa (PA) depends on complex regulatory networks, involving phosphorelay systems based on two-component systems (TCSs). The GacS/GacA TCS is a master regulator of biofilm formation, swarming motility, and virulence. GacS is a membrane-associated unorthodox histidine kinase (HK) whose phosphorelay signaling pathway is inhibited by the RetS hybrid HK. Here we provide structural and functional insights into the interaction of GacS with RetS. The structure of the GacS-HAMP-H1 cytoplasmic regions reveals an unusually elongated homodimer marked by a 135 Å long helical bundle formed by the HAMP, the signaling helix (S helix) and the DHp subdomain. The HAMP and S helix regions are essential for GacS signaling and contribute to the GacS/RetS binding interface. The structure of the GacS D1 domain together with the discovery of an unidentified functional ND domain, essential for GacS full autokinase activity, unveils signature motifs in GacS required for its atypical autokinase mechanism.


Subject(s)
Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa , Bacterial Proteins/chemistry , Histidine Kinase/chemistry , Pseudomonas aeruginosa/metabolism , Virulence
11.
Front Microbiol ; 13: 843092, 2022.
Article in English | MEDLINE | ID: mdl-35464916

ABSTRACT

Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.

12.
Front Microbiol ; 13: 845473, 2022.
Article in English | MEDLINE | ID: mdl-35401471

ABSTRACT

Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by ß (1-4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.

13.
J Virol ; 96(8): e0019722, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35348363

ABSTRACT

In Pseudomonas aeruginosa, the complex multisensing regulatory networks RetS-GacS/GacA have been demonstrated to play key roles in controlling the switch between planktonic and sessile lifestyles. However, whether this multisensing system is involved in the regulation of phage infection has not been investigated. Here, we provide a link between the sensors RetS/GacS and infection of phages vB_Pae_QDWS and vB_Pae_W3. Our data suggest that the sensors kinases RetS and GacS in Pseudomonas aeruginosa play opposite regulatory functions on phage infection. Mutation in retS increased phage resistance. Cellular levels of RsmY and RsmZ increased in PaΔretS and were positively correlated with phage resistance. Further analysis demonstrated that RetS regulated phage infection by affecting the type IV pilus (T4P)-mediated adsorption. The regulation of RetS on phage infection depends on the GacS/GacA two-component system and is likely a dynamic process in response to environmental signals. The findings offer additional support for the rapid emergence of phage resistance. IMPORTANCE Our knowledge on the molecular mechanisms behind bacterium-phage interactions remains limited. Our study reported that the complex multisensing regulatory networks RetS-GacS/GacA of Pseudomonas aeruginosa PAO1 play key roles in controlling phage infection. The main observation was that the mutation in RetS could result in increased phage resistance by reducing the type IV pilus-mediated phage adsorption. The bacterial defense strategy is generally applicable to various phages since many P. aeruginosa phages can use type IV pilus as their receptors. The results also suggest that the phage infection is likely to be regulated dynamically, which depends on the environmental stimuli. Reduction of the signals that RetS favors would increase phage resistance. Our study is particularly remarkable for uncovering a signal transduction system that was involved in phage infection, which may help in filling some knowledge gaps in this field.


Subject(s)
Bacteriophages , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/virology , Signal Transduction/genetics
14.
FEMS Microbiol Lett ; 369(1)2022 02 24.
Article in English | MEDLINE | ID: mdl-35266527

ABSTRACT

Azotobacter vinelandii is a soil bacterium that produces alginates, a family of polymers of biotechnological interest. In A. vinelandii, alginate production is controlled by the two-component system GacS/GacA. GacS/GacA, in turn, regulates the Rsm post-transcriptional regulatory system establishing a cascade that regulates alginate biosynthesis by controlling the expression of the algD biosynthetic gene. In Pseudomonas aeruginosa, GacS/GacA is influenced by other histidine-kinases constituting a multicomponent signal transduction system. In this study, we explore the presence of GacS-related histidine-kinases in A. vinelandii and discover a novel histidine-kinase (Avin_34990, renamed HrgS). This histidin-kinase acts as a negative regulator of alginate synthesis by controlling the transcription of the sRNAs belonging to the Rsm post-transcriptional regulatory system, for which a functional GacS is required.


Subject(s)
Azotobacter vinelandii , Alginates/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Histidine/genetics , Histidine/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism
15.
J Bacteriol ; 204(3): e0058021, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35041497

ABSTRACT

The Gac/Rsm system is a global regulator of Pseudomonas aeruginosa gene expression. The primary effectors are RsmA and RsmF. Both are RNA-binding proteins that interact with target mRNAs to modulate protein synthesis. RsmA/RsmF recognize GGA sequences presented in the loop portion of stem-loop structures. For repressed targets, the GGA sites usually overlap the ribosome binding site (RBS) and RsmA/RsmF binding inhibits translation initiation. RsmA/RsmF activity is controlled by several small non-coding RNAs (sRNA) that sequester RsmA/RsmF from target mRNAs. The most important sequestering sRNAs are RsmY and RsmZ. Transcription of rsmY/rsmZ is directly controlled by the GacSA two-component regulatory system. GacSA activity is antagonized by RetS, a hybrid sensor kinase. In the absence of retS, rsmY/rsmZ transcription is derepressed and RsmA/RsmF are sequestered by RsmY/RsmZ. Gac/Rsm system homeostasis is tightly controlled by at least two mechanisms. First, direct binding of RsmA to the rsmA and rsmF mRNAs inhibits further synthesis of both proteins. Second, RsmA stimulates rsmY/rsmZ transcription through an undefined mechanism. In this study we demonstrate that RsmA stimulates rsmY/rsmZ transcription by directly inhibiting RetS synthesis. RetS protein levels are elevated 2.5-fold in an rsmA mutant. Epistasis experiments demonstrate that the rsmA requirement for rsmY/rsmZ transcription is entirely suppressed in an rsmA, retS double mutant. RsmA directly interacts with the retS mRNA and requires two distinct GGA sites, one of which overlaps the RBS. We propose a model wherein RsmA inhibits RetS synthesis to promote rsmY/rsmZ transcription and that this acts as a checkpoint to limit RsmA/RsmF availability. IMPORTANCE The Pseudomonas aeruginosa Gac/Rsm system controls ∼500 genes and governs a critical lifestyle switch by inversely regulating factors that favor acute or chronic colonization. Control of gene expression by the Gac/Rsm system is mediated through RsmA and RsmF, small RNA-binding proteins that interact with target mRNAs to inhibit or promote protein synthesis and/or mRNA stability. RsmA/RsmF activity is governed by two small non-coding RNAs (RsmY and RsmZ) that sequester RsmA/RsmF from target mRNAs. The GacSA two-component regulatory system plays a pivotal role in the Gac/Rsm system by controlling rsmYZ transcription. This study provides insight into the control of homeostasis by demonstrating that RsmA directly targets and inhibits expression of RetS, an orphan sensor kinase critical for rsmYZ transcription.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , RNA-Binding Proteins , Repressor Proteins , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Homeostasis , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
16.
Mol Plant Microbe Interact ; 35(5): 369-379, 2022 May.
Article in English | MEDLINE | ID: mdl-35100009

ABSTRACT

The GacS-GacA type two-component system (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae EC1, the causative agent of soft rot disease, produces antibiotic-like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1, mainly by regulating production of the toxin zeamines. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expression of tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters that contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum-sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacterial Proteins , Dickeya , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Macrolides , Plant Diseases/microbiology , Polyamines , Virulence/genetics
17.
Water Res ; 209: 117943, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34923441

ABSTRACT

Micro-scale ZVI@GAC-based iron-carbon galvanic-cells (ZVI@GACs) were prepared with the Ca-Si-H/Ca-H formation process and first applied to initiate radical generation and coagulation processes in MBR for treating bio-refractory industrial wastewater (IWW). Batch tests revealed the H2O2 production (0.19-0.28 mg/L) and •OH generation (p-CBA decay, k1 = 0.040 min-1) in ZVI@GACs-dosed system (packing volume of 5%) under aeration. Adoption of ZVI@GACs into aerobic activated sludge process (ZVI@GACs/AS) enhanced TOC degradation (k2) and phenolic compounds (PHENs) destruction (k3). ZVI@GACs/AS at ZVI@GACs packing volume of 5%, 10% and 20% improved k2 from 0.11 h-1 (bare AS) to 0.17, 0.21 and 23 h-1 and k3 from 0.24 h-1 to 0.36, 0.49 and 0.57 h-1, respectively. The oxygen uptake rate (OUR) and 15-min acute bio-toxicity demonstrated that the bio-toxicity of IWW was reduced and the activity of biomass was enhanced in the ZVI@GACs/AS system. In MBR, ZVI@GACs at packing volume of 10% enhanced COD and PHENs removal by 14% and 22%, respectively. Membrane fouling cycle was prolonged by 71%. The accumulations of EPS-proteins, EPS-polysaccharides, SMP-proteins and SMP-polysaccharides were reduced by 6%, 67%, 27% and 60%, respectively. Fourier transform infrared spectroscopy (FTIR) confirmed the oxidation of SMP-polysaccharides in ZVI@GACs-MBR. The iron ions released from ZVI@GACs showed inhibition on the secretion of SMP-/EPS-proteins. Floc particle size distribution (PSD) and X-ray diffraction (XRD) spectrum confirmed that the coagulation effects of Fe(OH)3 and FeOOH triggered by Fe3+ increased the sludge floc size and contributed to membrane fouling mitigation. Genus Enterococcus was enriched in MBR with the destruction of PHENs by the ZVI@GACs-initiated radical generation process. The findings of this study confirmed successful development and adoption of ZVI@GACs into MBR for bio-refractory IWW treatment. It also provided an in-depth understanding on the mechanisms of ZVI@GACs-MBR system.

18.
J Biol Chem ; 297(4): 101193, 2021 10.
Article in English | MEDLINE | ID: mdl-34529974

ABSTRACT

Bacterial signaling histidine kinases (HKs) have long been postulated to function exclusively through linear signal transduction chains. However, several HKs have recently been shown to form complex multikinase networks (MKNs). The most prominent MKN, involving the enzymes RetS and GacS, controls the switch between the motile and biofilm lifestyles in the pathogenic bacterium Pseudomonas aeruginosa. While GacS promotes biofilm formation, RetS counteracts GacS using three distinct mechanisms. Two are dephosphorylating mechanisms. The third, a direct binding between the RetS and GacS HK regions, blocks GacS autophosphorylation. Focusing on the third mechanism, we determined the crystal structure of a cocomplex between the HK region of RetS and the dimerization and histidine phosphotransfer (DHp) domain of GacS. This is the first reported structure of a complex between two distinct bacterial signaling HKs. In the complex, the canonical HK homodimerization interface is replaced by a strikingly similar heterodimeric interface between RetS and GacS. We further demonstrate that GacS autophosphorylates in trans, thus explaining why the formation of a RetS-GacS complex inhibits GacS autophosphorylation. Using mutational analysis in conjunction with bacterial two-hybrid and biofilm assays, we not only corroborate the biological role of the observed RetS-GacS interactions, but also identify a residue critical for the equilibrium between the RetS-GacS complex and the respective RetS and GacS homodimers. Collectively, our findings suggest that RetS and GacS form a domain-swapped hetero-oligomer during the planktonic growth phase of P. aeruginosa before unknown signals cause its dissociation and a relief of GacS inhibition to promote biofilm formation.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Histidine Kinase/metabolism , Protein Multimerization , Pseudomonas aeruginosa/physiology , Bacterial Proteins/genetics , Histidine Kinase/genetics , Phosphorylation
19.
Curr Biol ; 31(1): 90-102.e7, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33125866

ABSTRACT

Mucus is a densely populated ecological niche that coats all non-keratinized epithelia, and plays a critical role in protecting the human body from infections. Although traditionally viewed as a physical barrier, emerging evidence suggests that mucus can directly suppress virulence-associated traits in opportunistic pathogens including Pseudomonas aeruginosa. However, the molecular mechanisms by which mucus affords this protection are unclear. Here, we show that mucins, and particularly their associated glycans, signal through the Dismed2 domain of the sensor kinase RetS in P. aeruginosa. We find that this RetS-dependent signaling leads to the direct inhibition of the GacS-GacA two-component system, the activity of which is associated with a chronic infection state. This signaling includes downregulation of the type VI secretion system (T6SS), and prevents T6SS-dependent bacterial killing by P. aeruginosa. Overall, these results shed light on how mucus impacts P. aeruginosa behavior, and may inspire novel approaches for controlling P. aeruginosa infections.


Subject(s)
Bacterial Proteins/metabolism , Mucin 5AC/metabolism , Polysaccharides/metabolism , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Animals , Bacterial Proteins/genetics , Disease Models, Animal , Down-Regulation , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Gene Expression Regulation, Bacterial/immunology , Host-Pathogen Interactions/immunology , Humans , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , RNA-Seq , Swine , Transcription Factors/genetics , Transcription Factors/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Virulence/genetics
20.
Front Microbiol ; 11: 2078, 2020.
Article in English | MEDLINE | ID: mdl-33013757

ABSTRACT

OBJECTIVES: To predict the novel vaccine peptide candidates against gacS protein involved with the citrate utilization in the two-component system of A. baumannii-associated virulence as an alternative strategy to combat the multi-drug resistant strains using an immuno-informatic approach. METHODS: The study is designed as an observational in silico study design with the application of BepiPred, AlgPred, VaxiJen, AntigenPro, SolPro, Expasy ProtParam server, IEDB database, and MHC cluster analytical tools and servers to predict the immuno-dominant B-cell and T-cell epitopes from gacS FASTA sequences retrieved from UNIPROT database. Further peptide interactions with TLR-4 was assessed based on the number of hydrogen bonds. RESULTS: Nine peptides (20aa) with the highest score of 1 were selected from the 137 epitopes, and five were predicted as antigenic epitopes (E1-E5). E3 was selected as the potent antigen (score: 0.939537) and E1 as the best vaccine candidate (score: 0.9803) under AntigenPro and Vaxijen server, respectively. SolPro predicted all epitopes as soluble peptides. ProtParam predictions showed E3 and E5 as stable proteins with a shelf life of 3.5 and 1.9 h and possessed negative GRAVY values. PsortB server predicted a final localization score of 7.88 for the gacS protein sequence as a cytoplasmic membrane protein. IEDB conservancy analysis showed 100% conserved sequences within the gacS sequence, and class I conservancy yielded positive values for all epitopes. Cluster analysis showed strong interactions, and the protein-peptide interactions with TLR-2 finally detected E5 as the best interacting peptide (H bonds = 14) followed by E3 (H bonds = 12). CONCLUSION: The study suggests five antigenic peptides as promiscuous vaccine candidates to target the gacS of A. baumannii using immuno-informatic approach toward the peptide synthesis and in vitro analysis. However, the study recommends further experimental validation for immunological response and memory through in vivo studies.

SELECTION OF CITATIONS
SEARCH DETAIL