Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 14(2): 52, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38274846

ABSTRACT

The glyoxalase system, involving Glyoxalase I (GlyI) and Glyoxalase II (Gly II), plays a vital role in abiotic stress tolerance in plants. A novel enzyme Glyoxalase III (Gly III) was found recently from bacteria, yeast, and plant species. This enzyme provides a new way to detoxify Methylglyoxal (MG), a cytotoxic α-oxoaldehyde, which, in excess, can cause complete cell destruction by forming Reactive Oxygen Species (ROS) and Advanced Glycation End products (AGEs) or DNA/RNA mutation. In this background, the current study examined sugarcane transgenic events that exhibit an increase in expression of EaGly III, to assess their performance in terms of germination and biomass production during formative stage under stress conditions. Southern blot analysis outcomes confirmed the integration of transgene in the transgenic plants. The results from quantitative RT-PCR analyses confirmed high expression levels of EaGly III in transgenic events compared to wild type (WT) under salinity (100 and 200 mM NaCl) and drought (withholding watering) conditions. Transgenic events exhibited enhanced biomass productivity ranged between 0.141 Kg/pot and 0.395 Kg/pot under 200 mM salinity and 0.262 Kg/pot and 0.666 Kg/pot under drought stress. Further, transgenic events observed significantly higher germination rates under salinity and drought conditions compared to that of WT. Subcellular localization prediction by EaGlyIII-GFP fusion expression in sugarcane callus showed that it is distributed across the cytoplasm, thus indicating its widespread activity within the cell. These results strongly suggest that enhancing EaGly III activity is a useful strategy to improve the salinity and drought-tolerance in sugarcane as well as other crops.

2.
Protein Sci ; 32(5): e4641, 2023 05.
Article in English | MEDLINE | ID: mdl-37060572

ABSTRACT

DJ-1, a protein encoded by PARK7 plays a protective role against neurodegeneration. Since its glyoxalase III activity catalyzing methylglyoxal (MG) to lactate was discovered, DJ-1 has been re-established as a deglycase decomposing the MG-intermediates with amino acids and nucleotides (hemithioacetal and hemiaminal) rather than MG itself, but it is still debatable. Here, we have clarified that human DJ-1 directly recognizes MG, and not MG-intermediates, by monitoring the detailed catalytic processes and enantiomeric lactate products. The hemithioacetal intermediate between C106 of 15 N-labeled DJ-1 (15N DJ-1) and MG was also monitored by NMR. TRIS molecule formed stable diastereotopic complexes with MG (Kd , 1.57 ± 0.27 mM) by utilizing its three OH groups, which likely disturbed the assay of deglycase activity. The low kcat of DJ-1 for MG and its MG-induced structural perturbation may suggest that DJ-1 has a regulatory function as an in vivo sensor of reactive carbonyl stress.


Subject(s)
Parkinson Disease , Humans , Aldehyde Oxidoreductases , Lactic Acid/metabolism , Parkinson Disease/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism
3.
Anal Biochem ; 630: 114317, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34391725

ABSTRACT

We developed a novel continuous assay to quantitatively characterize the catalytic activity of type III methylglyoxalases, a family of enzymes that detoxify methylglyoxal. This assay is based on spectrophotometric detection of hemithioacetal which forms in the reversible reaction of methylglyoxal with dithiothreitol. Due to rapid interconversion between hemithioacetal and methylglyoxal and the known equilibrium constant, hemithioacetal can be quantified spectrophotometrically at 286 nm and used as a reporter for methylglyoxal. When the concentration of methylglyoxal decreases due to catalytic conversion by methylglyoxalases, the concentration of hemithioacetal concomitantly decreases due to its spontaneous decomposition driven by the shift in equilibrium position. Therefore, the rate of total methylglyoxal consumption is the sum of the rate of hemithioacetal decomposition determined spectrophotometrically and the rate of change of methylglyoxal calculated from known concentrations of hemithioacetal. Varying concentrations of dithiothreitol and methylglyoxal creates a broad range of free methylglyoxal in solution that is crucial for the reliable determination of Michaelis constants. We demonstrate the utility of this assay using several recombinant glyoxalases for which kinetic parameters have been determined. This cost-effective and simple assay offers advantages over the existing discontinuous methods and will be useful for quantitative characterization of catalytic activities of type III methylglyoxalases.


Subject(s)
Aldehyde Oxidoreductases/analysis , Glutathione/chemistry , Spectrophotometry , Aldehyde Oxidoreductases/metabolism , Biocatalysis , Glutathione/metabolism
4.
J Plant Res ; 134(5): 1083-1094, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33886006

ABSTRACT

The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes in the presence of glutathione. Recent studies established the presence of unique DJ-1/PfpI domain containing protein named glyoxalase III (Gly III) in prokaryotes, involved in the detoxification of MG into D-lactic acid through a single step process. In the present study, eleven transgenic sugarcane events overexpressing EaGly III were assessed for salinity stress (100 mM and 200 mM NaCl) tolerance. Lipid peroxidation as well as cell membrane injury remained very minimal in all the transgenic events indicating reduced oxidative damage. Transgenic events exhibited significantly higher plant water status, gas exchange parameters, chlorophyll, carotenoid, and proline content, total soluble sugars, SOD and POD activity compared to wild type (WT) under salinity stress. Histological studies by taking the cross section showed a highly stable root system in transgenic events upon exposure to salinity stress. Results of the present study indicate that transgenic sugarcane events overexpressing EaGly III performed well and exhibited improved salinity stress tolerance.


Subject(s)
Saccharum , Aldehyde Oxidoreductases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Saccharum/genetics , Saccharum/metabolism , Salinity , Salt Stress , Stress, Physiological
5.
Antioxidants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922426

ABSTRACT

Glyoxalase pathway is the primary route for metabolism of methylglyoxal (MG), a toxic ubiquitous metabolite that affects redox homeostasis. It neutralizes MG using Glyoxalase I and Glyoxalase II (GLYI and GLYII) enzymes in the presence of reduced glutathione. In addition, there also exists a shorter route for the MG detoxification in the form of Glyoxalase III (GLYIII) enzymes, which can convert MG into D-lactate in a single-step without involving glutathione. GLYIII proteins in different systems demonstrate diverse functional capacities and play a vital role in oxidative stress response. To gain insight into their evolutionary patterns, here we studied the evolution of GLYIII enzymes across prokaryotes and eukaryotes, with special emphasis on plants. GLYIII proteins are characterized by the presence of DJ-1_PfpI domains thereby, belonging to the DJ-1_PfpI protein superfamily. Our analysis delineated evolution of double DJ-1_PfpI domains in plant GLYIII. Based on sequence and structural characteristics, plant GLYIII enzymes could be categorized into three different clusters, which followed different evolutionary trajectories. Importantly, GLYIII proteins from monocots and dicots group separately in each cluster and the each of the two domains of these proteins also cluster differentially. Overall, our findings suggested that GLYIII proteins have undergone significant evolutionary changes in plants, which is likely to confer diversity and flexibility in their functions.

6.
Plant Physiol Biochem ; 155: 683-696, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32861035

ABSTRACT

The accumulation of a metabolic by product - methylglyoxal above a minimal range can be highly toxic in all organisms. Stress induced elevation in methylglyoxal inactivates proteins and nucleic acids. Glutathione dependent glyoxalase enzymes like glyoxalase I and glyoxalase II together with glutathione independent glyoxalase III play inevitable role in methylglyoxal detoxification. Glyoxalase genes are generally conserved but with obvious exceptions. Mangroves being potent harsh land inhabitants, their internal organelles are constantly been exposed to elevated levels of methylglyoxal. First and foremost it is important to detect the presence of glyoxalases in mangroves. De novo transcriptome analysis of mangrove species Rhizophora mucronata Lam., identified eleven putative glyoxalase proteins (RmGLYI-1 to 5, RmGLYII-1 to 5 and RmGLYIII). Molecular characterization proposed PLN02300 or PLN02367 as the key domains of RmGLYI proteins. They possess molecular weight ranging from 26.45 to 32.53 kDa and may localize in cytosol or chloroplast. RmGLYII proteins of molecular weight 28.64-36 kDa, carrying PLN02398 or PLN02469 domains are expected to be localized in diverse cellular compartments. Cytosolic RmGLYIII with DJ-1/PfpI domain carries a molecular weight 26.4 kDa. Detailed structural analysis revealed monomeric nature of RmGLYI-1 and RmGLYII-1 whereas RmGLYIII is found to be homodimer. Molecular phylogenetic analysis and multiple sequence alignment specified conserved metal ion/substrate binding residues of RmGLY proteins. Estimation of relative expression of glyoxalases under salt stress indicated the prominence of RmGLYI and RmGLYII over RmGLYIII. The aforementioned prominence is supported by salt induced expression difference of glutathione metabolic enzymes and glutathione regulated transporter protein.


Subject(s)
Glutathione/metabolism , Lactoylglutathione Lyase/metabolism , Plant Proteins/metabolism , Rhizophoraceae/enzymology , Thiolester Hydrolases/metabolism , Gene Expression Profiling , Phylogeny , Pyruvaldehyde/metabolism , Rhizophoraceae/genetics , Salts , Transcriptome
7.
Biochem Biophys Res Commun ; 524(3): 542-548, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32014251

ABSTRACT

ES1 homologs are conserved among prokaryotes and eukaryotes, and the gene expression of ES1 homologs has been confirmed in diverse mammalian tissues. However, the localization and function of mammalian ES1 proteins remain poorly understood. ES1 protein was found specifically expressed in the cone cells of zebrafish and was proposed to contribute to the formation of mega mitochondria. We also observed mega mitochondria in the cone cells of porcine retinas, which raised the question regarding the localization of the porcine ES1. Therefore, in the present study, we aimed to determine the localization of ES1 in porcine retinas. We prepared a rabbit polyclonal antibody against the ES1 C-terminal and performed western blotting analysis and immunoelectron microscopy. The ES1 was found to be localized mainly in the mitochondrial intermembrane space of the porcine retinal cells. Immunopositive signals for ES1 were observed in the mitochondria of almost all retinal cells, and not specifically in cone cells. Our results and the ES1 sequences indicated that the glyoxalase III activity of ES1 might contribute to the stable functionality of the active mitochondria in a protective manner.


Subject(s)
Eye Proteins/metabolism , Mitochondrial Membranes/metabolism , Retina/cytology , Sequence Homology, Amino Acid , Swine/metabolism , Amino Acid Sequence , Animals , Eye Proteins/chemistry , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Retina/ultrastructure , Solubility
8.
Int J Mol Sci ; 18(4)2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28358304

ABSTRACT

The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Lactoylglutathione Lyase/metabolism , Plant Proteins/metabolism , Plants/enzymology , Thiolester Hydrolases/metabolism , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , Lactoylglutathione Lyase/chemistry , Lactoylglutathione Lyase/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/genetics , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL