Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
BMC Cancer ; 24(1): 1164, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300412

ABSTRACT

The intricate interplay of cancer stem cell plasticity, along with the bidirectional transformation between epithelial-mesenchymal states, introduces further intricacy to offer insights into newer therapeutic approaches. Differentiation therapy, while successful in targeting leukemic stem cells, has shown limited overall success, with only a few promising instances. Using colon carcinoma cell strains with sequential p53/p73 knockdowns, our study underscores the association between p53/p73 and the maintenance of cellular plasticity. Morphological alterations corresponding with cell surface marker expressions, transcriptome analysis and functional assays were performed to access stemness and EMT (Epithelial-Mesenchymal Transition) characteristics in the spectrum of cells exhibiting sequential p53 and p73 knockdowns. Notably, our investigation explores the effectiveness of esculetin in reversing the shift from an epithelial to a mesenchymal phenotype, characterized by stem cell-like traits. Esculetin significantly induces enterocyte differentiation and promotes epithelial cell polarity by altering Wnt axes in Cancer Stem Cell-like cells characterized by high mesenchymal features. These results align with our previous findings in leukemic blast cells, establishing esculetin as an effective differentiating agent in both Acute Myeloid Leukemia (AML) and solid tumor cells.


Subject(s)
Cell Differentiation , Cell Plasticity , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Neoplastic Stem Cells , Tumor Protein p73 , Tumor Suppressor Protein p53 , Umbelliferones , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Humans , Umbelliferones/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Cell Differentiation/drug effects , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , Cell Plasticity/drug effects , Cell Line, Tumor , Phenotype , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism
2.
BMC Chem ; 18(1): 183, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304938

ABSTRACT

A novel series of 2-cyano-3-(pyrazol-4-yl)-N-(thiazol-2-yl)acrylamide derivatives (3a-f) were synthesized using Knoevenagel condensation and characterized using various spectral tools. The weak nuclease activity of compounds (3a-f) against pBR322 plasmid DNA was greatly enhanced by irradiation at 365 nm. Compounds 3b and 3c, incorporating thienyl and pyridyl moieties, respectively, exhibited the utmost nuclease activity in degrading pBR322 plasmid DNA through singlet oxygen and superoxide free radicals' species. Furthermore, compounds 3b and 3c affinities towards calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) were investigated using UV-Vis and fluorescence spectroscopic analysis. They revealed good binding characteristics towards CT-DNA with Kb values of 6.68 × 104 M-1 and 1.19 × 104 M-1 for 3b and 3c, respectively. In addition, compounds 3b and 3c ability to release free radicals on radiation were targeted to be used as cytotoxic compounds in vitro for colon (HCT116) and breast cancer (MDA-MB-231) cells. A significant reduction in the cell viability on illumination at 365 nm was observed, with IC50 values of 23 and 25 µM against HCT116 cells, and 30 and 9 µM against MDA-MB-231 cells for compounds 3b and 3c, respectively. In conclusion, compounds 3b and 3c exhibited remarkable DNA cleavage and cytotoxic activity on illumination at 365 nm which might be associated with free radicals' production in addition to having a good affinity for interacting with CT-DNA and BSA.

3.
Future Med Chem ; : 1-17, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230501

ABSTRACT

Aim: Twenty compounds of 6-nitro-4-substituted quinazolines were synthesized.Materials & methods: The new derivatives were evaluated for their epidermal growth factor receptor (EGFR) inhibitory activity. The most potent derivatives were assessed for their cytotoxicity against colon cancer and lung cancer cells, in addition to normal fibroblast cells.Results & discussion: compound 6c showed a superior to nearly equal cytotoxicity in comparison to gefitinib, it also revealed a good safety profile. Compound 6c caused a cell cycle arrest at G2/M phase in addition to induction of apoptosis. A molecular docking study was conducted on the most active compounds to gain insights of their binding mode in the active site of EGFR enzyme besides ADME prediction of their physicochemical properties and drug likeness profile.


[Box: see text].

4.
Cell Biol Int ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285519

ABSTRACT

Hypoxia-induced heterogeneity in colorectal cancer (CRC) significantly impacts patient survival by promoting chemoresistance. These conditions alter the regulation of miRNAs, key regulators of crucial processes like proliferation, apoptosis, and invasion, leading to tumor progression. Despite their promising potential as diagnostic and therapeutic targets, the underlying mechanisms by which miRNAs influence hypoxia-mediated tumorigenesis remain largely unexplored. This study aims to elucidate the action of miRNAs in HCT-116 colorectal cancer stem cells (CSCs) under hypoxia, providing valuable insights into their role in tumor adaptation and progression. MiRNA expression was determined using Nanostring nCounter, and bioinformatic analysis was performed to explain the molecular pathway. A total of 50 miRNAs were obtained with an average count of ≥ 20 reads for comparative expression analysis. The results showed that hypoxia-affected 36 oncomiRs were increased in HCT-116, and 14 suppressor-miRs were increased in MSCs. The increase in miRNA expression occurred consistently from normoxia to hypoxia and significantly differed between mesenchymal stem cells (MSCs) and HCT-116. Furthermore, miR-16-5p and miR-29a-3p were dominant in regulating the p53 signaling pathway, which is thought to be related to the escape mechanism against hypoxia and maintaining cell proliferation. More research with a genome-transcriptome axis approach is needed to fully understand miRNAs' role in adapting CRC cells and MSCs to hypoxia. Further research could focus on developing specific biomarkers for diagnosis. In addition, anti-miR can be developed as a therapy to prevent cancer proliferation or inhibit the adaptation of cancer cells to hypoxia.

5.
Cureus ; 16(8): e66393, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39246994

ABSTRACT

Background Acquired resistance to 5-fluorouracil (5-FU) frequently results in chemotherapy failure and disease recurrence in advanced colorectal cancer (CRC) patients. Research has demonstrated that dysregulation of long non-coding RNAs (lncRNAs) mediates the development of chemotherapy resistance in cancerous cells. The present study aims to identify key lncRNAs associated with 5-FU resistance in CRC using bioinformatic and experimental validation approaches. Methods The Gene Expression Omnibus (GEO) dataset GSE119481, which contains miRNA expression profiles of the parental CRC HCT116 cell line (HCT116/P) and its in-vitro established 5-FU-resistant sub-cell line (HCT116/FUR), was downloaded. Firstly, differentially expressed microRNAs (DEmiRNAs) between the parental and 5-FU resistance cells were identified. LncRNAs and mRNAs were then predicted using online databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to uncover relevant biological mechanisms and pathways. Networks integrating lncRNAs, miRNAs, and mRNAs interactions were constructed, and topological analyses were used to identify key lncRNAs associated with 5-FU resistance. An in-vitro model of the HCT116/FUR sub-cell line was developed by exposing the HCT116/P cell line to increasing concentrations of 5-FU. Finally, real-time quantitative PCR (RT-qPCR) was performed on total RNA extracted from the HCT116/P cell line and the HCT116/FUR sub-cell line to validate the in-silico predictions of key lncRNAs. Results A total of 32 DEmiRNAs were identified. Enrichment analysis demonstrated that these DEmiRNAs were mainly enriched in several cancer hallmark pathways that regulate cell growth, cell cycle, cell survival, inflammation, immune response, and apoptosis. The predictive analysis identified 237 unique lncRNAs and 123 mRNAs interacting with these DEmiRNAs. The pathway analysis indicated that most of these predicted genes were enriched in the cellular response to starvation, protein polyubiquitination, chromatin remodeling, and negative regulation of gene expression. Topological analyses of the lncRNA-miRNA-mRNA network highlighted the nuclear enriched abundant transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and Opa interacting protein 5 antisense RNA 1 (OIP5-AS1) as central lncRNAs. Experimental analysis by RT-qPCR confirmed that the expression levels of NEAT1 and MALAT1 were significantly increased in HCT116/FUR cells compared to HCT116/P cells. However, no significant difference was observed in the OIP5-AS1 expression level between the two cells. Conclusion Our findings specifically highlight MALAT1 and NEAT1 as significant contributors to 5-FU resistance in CRC. These lncRNAs are promising biomarkers for diagnosing and predicting outcomes in CRC.

6.
Sci Rep ; 14(1): 20045, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209915

ABSTRACT

In the present study, we prepared new sixteen different derivatives. The first series were prepared (methylene)bis(2-(thiophen-2-yl)-1H-indole) derivatives which have (indole and thiophene rings) by excellent yield from the reaction (2 mmol) 2-(thiophen-2-yl)-1H-indole and (1 mmol) from aldehyde. The second series were synthesized (2-(thiophen-2-yl)-1H-indol-3-yl) methyl) aniline derivatives at a relatively low yield from multicomponent reaction of three components 2-(thiophen-2-yl)-1H-indole, N-methylaniline and desired aldehydes. The anticancer effect of the newly synthesized derivatives was determined against different cancers, colon, lung, breast and skin. The counter screening was done against normal Epithelial cells (RPE-1). The effect on cell cycle and mechanisms underlying of the antitumor effect were also studied. All new compounds were initially tested at a single dose of 100 µg/ml against this panel of 5 human tumor cell lines indicated that the compounds under investigation exhibit selective cytotoxicity against HCT-116 cell line and compounds (4g, 4a, 4c) showed potent anticancer activity against HCT-116 cell line with the inhibitory concentration IC50 values were, 7.1±0.07, 10.5± 0.07 and 11.9± 0.05 µΜ/ml respectively. Also, the active derivatives caused cell cycle arrest at the S and G2/M phase with significant(p < 0.0001) increase in the expression levels of tumor suppressors miR-30C, and miR-107 and a tremendous decrease in oncogenic miR-25, IL-6 and C-Myc levels. It is to conclude that the anticancer activity could be through direct interaction with tumor cell DNA like S-phase-dependent chemotherapy drugs. Which can interact with DNA or block DNA synthesis such as doxorubicin, cisplatin, or 5-fluorouracil and which were highly effective in killing the cancer cells. This data ensures the efficiency of the 3 analogues on inducing cell cycle arrest and preventing cancer cell growth. The altered expressions explained the molecular mechanisms through which the newly synthesized analogues exert their anticancer action.


Subject(s)
Antineoplastic Agents , Cell Cycle Checkpoints , Cell Proliferation , Indoles , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , HCT116 Cells , Cell Cycle Checkpoints/drug effects , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Drug Screening Assays, Antitumor
7.
Article in English | MEDLINE | ID: mdl-39145810

ABSTRACT

The objective of this study is to explore the antiproliferative activity of the traditional Chinese medicine monomer vitexin on colon cancer HCT-116 cells and its underlying mechanism. The in vitro antiproliferative activity of vitexin on colon cancer HCT-116 cells was evaluated using the CCK-8 assay. Potential drug targets for colon cancer were identified through GEO chip data mining, and molecular docking using Schrödinger software was conducted. Molecular dynamics simulations were employed to deeply analyze the interaction between candidate compounds and target proteins. Flow cytometry was employed to examine the cell cycle. The impact of vitexin on the expression of CDK1/cyclinB proteins in HCT-116 cells was assessed through Western blot analysis, immunofluorescence, and CDK inhibition assay. Vitexin exhibited inhibitory effects on colon cancer HCT-116 cells, with a half inhibitory concentration (IC50) value of 203.27 ± 9.85 µmol/L. The analysis of differential gene expression in GEO and TCGA datasets, along with the GENECARD dataset of related disease genes, identified 91 disease targets, including "CDK1." Vitexin induced cell cycle arrest in the G2/M phase of HCT-116 cells. Molecular docking revealed a strong interaction between Vitexin and CDK1 (Docking score - 9.497), with molecular dynamics simulations confirming the stability of the Vitexin-CDK1 complex and comparable inhibitory effects to Flavopiridol. Vitexin can inhibit the expression of CDK1/cyclin B proteins in HCT-116 cells, with an IC50 of 58.06 ± 3.07 µmol/L. Vitexin may inhibit colon cancer HCT-116 cell proliferation by suppressing CDK1/cyclin B expression, leading to cell cycle arrest in the G2/M phase.

8.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998936

ABSTRACT

Metabolic alterations are increasingly recognized as important aspects of colorectal cancer (CRC), offering potential avenues for identifying therapeutic targets. Previous studies have demonstrated the cytotoxic potential of bamboo leaf extract obtained from Guadua incana (BLEGI) against HCT-116 colon cancer cells. However, the altered metabolic pathways in these tumor cells remain unknown. Therefore, this study aimed to employ an untargeted metabolomic approach to reveal the metabolic alterations of the endometabolome and exometabolome of HCT-116 cells upon exposure to BLEGI treatment. First, a chemical characterization of the BLEGI was conducted through liquid chromatography coupled with mass spectrometry (LC-MS). Next, we assessed cell viability via MTT and morphological analysis using an immunofluorescence assay against colon cancer cells, and anti-inflammatory activity using an LPS-stimulated macrophage model. Subsequently, we employed LC-MS and proton nuclear magnetic resonance (1H-NMR) to investigate intra- and extracellular changes. Chemical characterization primarily revealed the presence of compounds with a flavone glycoside scaffold. Immunofluorescence analysis showed condensed chromatin and subsequent formation of apoptotic bodies, suggesting cell death by apoptosis. The results of the metabolomic analysis showed 98 differential metabolites, involved in glutathione, tricarboxylic acid cycle, and lipoic acid metabolism, among others. Additionally, BLEGI demonstrated significant nitric oxide (NO) inhibitory capacity in macrophage cells. This study enhances our understanding of BLEGI's possible mechanism of action and provides fresh insights into therapeutic targets for treating this disease.


Subject(s)
Colonic Neoplasms , Plant Extracts , Plant Leaves , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Metabolomics/methods , Metabolome/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Animals , RAW 264.7 Cells , Mice , Chromatography, Liquid
9.
Drug Dev Res ; 85(5): e22231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956926

ABSTRACT

The close association between inflammation and cancer inspired the synthesis of a series of 1,3,4-oxadiazole derivatives (compounds H4-A-F) of 6-methoxynaphtalene. The chemical structures of the new compounds were validated utilizing Fourier-transform infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopic techniques and CHN analysis. Computer-aided drug design methods were used to predict the compounds biological target, ADMET properties, toxicity, and to evaluate the molecular similarities between the design compounds and erlotinib, a standard epidermal growth factor receptor (EGFR) inhibitor. The antiproliferative effects of the new compounds were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, cell cycle analysis, apoptosis detection by microscopy, quantitative reverse transcription-polymerase chain reaction, and immunoblotting, and EGFR enzyme inhibition assay. In silico analysis of the new oxadiazole derivatives indicated that these compounds target EGFR, and that compounds H4-A, H4-B, H4-C, and H4-E show similar molecular properties to erlotinib. Additionally, the results indicated that none of the synthesized compounds are carcinogenic, and that compounds H4-A, H4-C, and H4-F are nontoxic. Compound H4-A showed the best-fit score against EGFR pharmacophore model, however, the in vitro studies indicated that compound H4-C was the most cytotoxic. Compound H4-C caused cytotoxicity in HCT-116 colorectal cancer cells by inducing both apoptosis and necrosis. Furthermore, compounds H4-D, H4-C, and H4-B had potent inhibitory effect on EGFR tyrosine kinase that was comparable to erlotinib. The findings of this inquiry offer a basis for further investigation into the differences between the synthesized compounds and erlotinib. However, additional testing will be needed to assess all of these differences and to identify the most promising compound for further research.


Subject(s)
Antineoplastic Agents , ErbB Receptors , Molecular Docking Simulation , Naproxen , Oxadiazoles , ErbB Receptors/antagonists & inhibitors , Humans , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Oxadiazoles/chemical synthesis , Naproxen/pharmacology , Naproxen/analogs & derivatives , Naproxen/chemistry , Naproxen/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Apoptosis/drug effects , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Cell Proliferation/drug effects
10.
Cancer Diagn Progn ; 4(4): 396-401, 2024.
Article in English | MEDLINE | ID: mdl-38962555

ABSTRACT

Background/Aim: Rapamycin inhibits the mTOR protein kinase. Methioninase (rMETase), by degrading methionine, targets the methionine addiction of cancer cells and has been shown to improve the efficacy of chemotherapy drugs, reducing their effective doses. Our previous study demonstrated that rapamycin and rMETase work synergistically against colorectal-cancer cells, but not on normal cells, when administered simultaneously in vitro. In the present study, we aimed to further our previous findings by exploring whether  synergy exists between rapamycin and rMETase when used sequentially against HCT-116 colorectal-carcinoma cells, compared to simultaneous administration, in vitro. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line were previously determined using the CCK-8 cell viability assay (11). We then examined the efficacy of rapamycin and rMETase, both at their IC50, administered simultaneously or sequentially on the HCT-116 cell line, with rapamycin administered before rMETase and vice versa. Results: The IC50 for rapamycin and rMETase, determined from previous experiments (11), was 1.38 nM and 0.39 U/ml, respectively, of HCT-116 cells. When rMETase was administered four days before rapamycin, both at the IC50, there was a 30.46% inhibition of HCT-116 cells. When rapamycin was administered four days before rMETase, both at the IC50, there was an inhibition of 41.13%. When both rapamycin and rMETase were simultaneously administered, both at the IC50, there was a 71.03% inhibition. Conclusion: Rapamycin and rMETase have synergistic efficacy against colorectal-cancer cells in vitro when administered simultaneously, but not sequentially.

11.
Anim Cells Syst (Seoul) ; 28(1): 315-325, 2024.
Article in English | MEDLINE | ID: mdl-38895161

ABSTRACT

Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, in vitro monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the G3BP1 gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.

12.
Iran J Public Health ; 53(5): 1164-1174, 2024 May.
Article in English | MEDLINE | ID: mdl-38912155

ABSTRACT

Background: Sodium butyrate (NaBu) is a short-chain fatty acid; it is one of the histone deacetylase inhibitors, which can alter both genetic and epigenetic expressions. The present study aimed to elucidate the effect of Na-Bu on the expression of miR-21, miR-143, and miR-145 in human colorectal cancer HCT-116 cell lines. Methods: This study was done in Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. HCT-116 cell line was treated with diverse concentrations of NaBu (6.25 mM to 200 mM) at 24, 48, and 72 h. MTT assay was used for assessing the cytotoxicity. Quantitative Real-Time-PCR was performed to investigate the gene expression of miR-21, miR-143, and miR-145. Results: IC50 values were evaluated by MTT assay. IC50 for HCT-116 was 50 mM, 12.5 mM, and 6.25 mM for 24, 48, and 72 h of incubation, respectively. According to the Real-Time-PCR results, 50 mM NaBu after 24 h caused a significant up-regulation in the expression of the miR-21, miR-143, and miR-145 (P<0.05). In 48 h, incubation, 12.5 mM NaBu caused a significant up-regulation in the expression of the miR-21, miR-143, and miR-145 (P<0.05). In treated cells with 6.25 mM NaBu after 72 h of incubation caused a significant up-regulation in the expression of the miR-21, miR-143, and miR-145 compared with untreated cells (P<0.05). Conclusion: The upregulation of miR-21, miR-143, and miR-145 expression are mediated by transcriptional regulation and the activation of this miR promoter is modulated by histone acetylation. The employment of NaBu may represent a promising approach for improving HDACi drug-based therapies for colon cancers.

13.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930915

ABSTRACT

Organic arsenic compounds such as p-aminophenylarsine oxide (p-APAO) are easier for structural optimization to improve drug-like properties such as pharmacokinetic properties, therapeutic efficacy, and target selectivity. In order to strengthen the selectivity of 4-(1,3,2-dithiarsinan-2-yl) aniline 7 to tumor cell, a thiourea moiety was used to strengthen the anticancer activity. To avoid forming a mixture of α/ß anomers, the strategy of 2-acetyl's neighboring group participation was used to lock the configuration of 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide. 1-(4-(1,3,2-dithiarsinan-2-yl) aniline)-2-N-(2,3,4,6-tetra-O-acetyl-ß-d-glucopyranos-1-yl)-thiourea 2 can increase the selectivity of human colon cancer cells HCT-116 (0.82 ± 0.06 µM vs. 1.82 ± 0.07 µM) to human embryonic kidney 293T cells (1.38 ± 0.01 µM vs. 1.22 ± 0.06 µM) from 0.67 to 1.68, suggesting a feasible approach to improve the therapeutic index of arsenic-containing compounds as chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Drug Design , Thiourea , Humans , Thiourea/chemistry , Thiourea/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Glucose/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Molecular Structure , Arsenicals/chemistry , Arsenicals/pharmacology , Arsenicals/chemical synthesis , Structure-Activity Relationship
14.
Biology (Basel) ; 13(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38927282

ABSTRACT

Cratoxylum formosum ssp. formosum (Cff), C. formosum ssp. pruniflorum (Cfp), and C. sumatranum (Cs) were investigated for phytochemical analysis. Toxicity testing, programmed cell death, and cell cycle arrest were tested on CHL-1, HCT-116, and HepG2 cancer cell lines, and human normal PBMCs. The results are revealed in the following order. The phytochemical percentages varied in each species, the quantity and concentration of α-amyrin and resveratrol were 0.038 mg/g and 0.955 mg/mL, and 0.064 mg/g and 0.640 mg/mL. The most studied Cratoxylum extracts showed IC50 values in PBMCs and cancer cell lines except for the hexane Cff and ethanol Cfp extracts. All studied extracts did not induce DNA breaks in PBMCs but caused significant DNA breaks in the cancer cell lines. All studied extracts induced both apoptosis and necrosis in cancer cell lines, and the DNA quantity in the S and G2-M phases decreased significantly but did not induce apoptosis and necrosis in PBMCs. Except for the ethanolic extracts of Cff and Cfp that induced PBMCs apoptosis and necrosis, these data confirmed that the three studied Cratoxylum samples have inhibiting properties for the growth of cancer cells and low toxicity to PBMCs. Cs showed more toxicity to cancer cell lines than Cf and cisplatin.

15.
PeerJ ; 12: e17559, 2024.
Article in English | MEDLINE | ID: mdl-38854798

ABSTRACT

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Subject(s)
Apoptosis , Arsenic Trioxide , Cell Movement , Cell Proliferation , Cell Survival , Colorectal Neoplasms , TRPM Cation Channels , Humans , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , Arsenic Trioxide/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , HCT116 Cells , Cell Movement/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxides/pharmacology , Antineoplastic Agents/pharmacology , Neoplasm Invasiveness , Arsenicals/pharmacology
16.
Mol Biol Rep ; 51(1): 732, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872006

ABSTRACT

BACKGROUND: The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS: P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3ß) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3ß and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3ß and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION: The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.


Subject(s)
Apoptosis , Colonic Neoplasms , Glycogen Synthase Kinase 3 beta , Harmine , Peganum , Seeds , Humans , Peganum/chemistry , HCT116 Cells , Apoptosis/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Seeds/chemistry , Harmine/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alkaloids/pharmacology , Harmaline/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Proliferation/drug effects
17.
Asian Pac J Cancer Prev ; 25(5): 1579-1587, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809629

ABSTRACT

BACKGROUND: Gac aril contains high level of carotenoids. This carotenoid possesses several pharmacological properties including antioxidant, anti-inflammatory, and anti-tumor activities. OBJECTIVE: To investigate the anti-cancer activity of Gac aril extract on human colorectal cancer cells and its related mechanisms. METHODS: Colorectal cancer cell lines HCT116 and HT29 were treated with Gac aril extract and its effects on cytotoxicity and anti-proliferation were analyzed using the MTT/MTS and colony formation assay, respectively. Then, further related mechanisms responsible for anti-proliferation were investigated by cell death detection ELISA and Flow cytometry. RESULTS: The results showed that treated cells became rounded up and there was a loss of contact with neighboring cells, leading to a reduction of cell viability. The cytotoxic effects were evaluated IC50 for HCT116 and HT29 cells were 2.16 mg/mL and 1.29 mg/mL, respectively but it not toxic to normal HEK293 at the same dose. Moreover, Gac aril extract significantly inhibits proliferative ability with increasing concentrations having a greater effect. Subsequently, the cellular mechanism responsible for suppressive proliferation was validated. It shows apoptosis induction and arrest of cell cycle. CONCLUSION: Our findings demonstrated that Gac aril extract can induce apoptosis and arrest of cell cycle at S and G2/M phases in both HCT116 and HT29 colorectal cancer cells.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Momordica , Plant Extracts , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Momordica/chemistry , Tumor Cells, Cultured , Cell Cycle/drug effects , HCT116 Cells , HT29 Cells
18.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38759254

ABSTRACT

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Subject(s)
Biphenyl Compounds , Cell Proliferation , Drug Screening Assays, Antitumor , Lignans , YAP-Signaling Proteins , Humans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , HCT116 Cells , YAP-Signaling Proteins/metabolism , Molecular Structure , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Sulfides/chemical synthesis , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Allyl Compounds , Phenols
19.
Food Chem X ; 22: 101458, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38803668

ABSTRACT

The study explores the potential of orange peel extract (OPE) as a versatile natural resource, focusing on its phenolic composition, antioxidant, and antibacterial properties, as well as its application in fortifying yogurt. Analysis revealed significant concentrations of phenolic compounds in OPE. OPE exhibited notable antibacterial efficacy against pathogenic bacteria, particularly marine Escherichia coli, with synergistic effects observed when combined with Amikacin. Incorporating OPE into yogurt led to changes in chemical composition, enhancing total proteins, fat, and ash content. Fortified yogurt showed increased antioxidant activity and potential anti-cancer properties against HCT116 cell lines. In conclusion, OPE emerges as a rich source of bioactive compounds with diverse applications, from its antioxidant and antibacterial properties to its potential in fortifying functional foods like yogurt. This comprehensive exploration provides valuable insights into the multifaceted benefits of OPE, paving the way for its utilization in various industries and health-related applications.

20.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612735

ABSTRACT

The antitumor activity of different ent-kaurane diterpenes has been extensively studied. Several investigations have demonstrated the excellent antitumor activity of synthetic derivatives of the diterpene atractyligenin. In this research, a series of new synthetic amides and their 15,19-di-oxo analogues obtained from atractyligenin by modifying the C-2, C-15, and C-19 positions were designed in order to dispose of a set of derivatives with different substitutions at the amidic nitrogen. Using different concentrations of the obtained compounds (10-300 µM) a reduction in cell viability of HCT116 colon cancer cells was observed at 48 h of treatment. All the di-oxidized compounds were more effective than their alcoholic precursors. The di-oxidized compounds had already reduced the viability of two colon cancer cells (HCT116 and Caco-2) at 24 h when used at low doses (2.5-15 µM), while they turned out to be poorly effective in differentiated Caco-2 cells, a model of polarized enterocytes. The data reported here provide evidence that di-oxidized compounds induced apoptotic cell death, as demonstrated by the appearance of condensed and fragmented DNA in treated cells, as well as the activation of caspase-3 and fragmentation of its target PARP-1.


Subject(s)
Atractyloside/analogs & derivatives , Colonic Neoplasms , Diterpenes, Kaurane , Humans , Diterpenes, Kaurane/pharmacology , Caco-2 Cells , Colonic Neoplasms/drug therapy , Amides , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL