Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Front Oncol ; 14: 1438722, 2024.
Article in English | MEDLINE | ID: mdl-39224810

ABSTRACT

Objective: To determine the function of miR-125a-5p in laryngeal squamous cell carcinoma (LSCC), its correlation with radiation sensitivity, and the underlying regulatory mechanism. Materials and methods: We conducted the analysis on the correlation between miR-125a-5p and head and neck squamous cell carcinoma (HNSCC) using data obtained from The Cancer Genome Atlas (TCGA). The putative gene targeted by miR-125a-5p has been identified as HK2, while the expression levels of miR-125a-5p and HK2 were measured in laryngeal cancer tissues and cells using RT-PCR. MiR-125a-5p and HK2 were introduced into the lentiviral vector and the vector was used to transfect AMC-HN-8 cells. The roles of miR-125a-5p and HK2 in LSCC and on radiosensitivity were determined by evaluating cell growth, examining colony formation, analyzing flow cytometry, and utilizing the single hit multi-target model. Western blotting was used to measure H2AX and rH2AX levels in the DNA damage response (DDR) pathway. The validation of the interaction between miR-125a-5p and HK2 was conducted through the dual-luciferase assay. To further confirm the association between miR-125a-5p and HK2, as well as its influence on radiosensitivity, rescue experiments were performed. Results: The expression of miR-125a-5p is downregulated in LSCC, while upregulating its expression could suppress cell growth, induce apoptosis, and enhance radiosensitivity. Additionally, HK2 exhibited high expression in LSCC and the biological function was opposite to miR-125a-5p. Western blotting analysis revealed that miR-125a-5p increased rH2AX levels and decreased H2AX levels, conversely, HK2 had the opposite effect on miR-125a-5p. These findings suggested that HK2 may serve as the target gene of miR-125a-5p. The double luciferase assay confirmed the binding of HK2 to miR-125a-5p, and rescue trials confirmed the role of miR-125a-5p in regulating the effects and radiation sensitivity of LSCC by targeting HK2 via the DDR pathway. Conclusion: By targeting HK2 and impacting the DDR pathway, miR-125a-5p has been found to inhibit cellular proliferation, enhance apoptosis, and heighten radiosensitivity in LSCC.

2.
Curr Med Chem ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39253929

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) stands as the third most widespread cancer worldwide in both men and women, witnessing a concerning rise, especially in younger demographics. Abnormal activation of the Non-Receptor Tyrosine Kinase c-Src has been linked to the advancement of several human cancers, including colorectal, breast, lung, and pancreatic ones. The interaction between c-Src and Hexokinase 2 (HK2) triggers enzyme phosphorylation, significantly boosting glycolysis, and ultimately contributing to the development of CRC. OBJECTIVES: The objectives of this study are to examine the influence of newly identified mutations on the interaction between c-Src and the HK2 enzyme and to discover potent phytocompounds capable of disrupting this interaction. METHODS: In this study, we utilized molecular docking to check the effect of the identified mutation on the binding of c-Src with HK2. Virtual drug screening, MD simulation, and binding free energy were employed to identify potent drugs against the binding interface of c-Src and HK2. RESULTS: Among these mutations, six (W151C, L272P, A296S, A330D, R391H, and P434A) were observed to significantly disrupt the stability of the c-Src structure. Additionally, through molecular docking analysis, we demonstrated that the mutant forms of c-Src exhibited high binding affinities with HK2. The wildtype showed a docking score of -271.80 kcal/mol, while the mutants displayed scores of -280.77 kcal/mol, -369.01 kcal/mol, -324.41 kcal/mol, -362.18 kcal/mol, 266.77 kcal/mol, and -243.28 kcal/mol for W151C, L272P, A296S, A330D, R391H, and P434A respectively. Furthermore, we identified five lead phytocompounds showing strong potential to impede the binding of c-Src with HK2 enzyme, essential for colon cancer progression. These compounds exhibit robust bonding with c-Src with docking scores of -7.37 kcal/mol, -7.26 kcal/mol, -6.88 kcal/mol, -6.81 kcal/mol, and -6.73 kcal/mol. Moreover, these compounds demonstrate dynamic stability, structural compactness, and the lowest residual fluctuation during MD simulation. The binding free energies for the top five hits (-42.44±0.28 kcal/mol, -28.31±0.25 kcal/mol, -34.95±0.44 kcal/mol, -38.92±0.25 kcal/mol, and -30.34±0.27 kcal/mol), further affirm the strong interaction of these drugs with c-Src which might impede the cascade of events that drive the progression of colon cancer. CONCLUSION: Our findings serve as a promising foundation, paving the way for future discoveries in the fight against colorectal cancer.

3.
Chin J Integr Med ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39231918

ABSTRACT

OBJECTIVE: To explore the preventive and therapeutic effects of Dahuang Zhechong Pill (DZP) on pulmonary fibrosis and the underlying mechanisms. METHODS: The first key rate-limiting enzyme hexokinase 2 (HK2) of glycolysis was silenced and over-expressed through small interfering RNA and lentivirus using lung fibroblast MRC-5 cell line, respectively. The cell viability, migration, invasion and proliferation were detected by cell counting kit-8, wound healing assay, transwell assay, and flow cytometry. The mRNA and protein expression levels of HK2 were detected by RT-PCR and Western blotting, respectively. The contents of glucose, adenosine triphosphate (ATP) and lactate in MRC-5 cells were determined by enzyme-linked immunosorbnent assay (ELISA). Then, the relationship between miR-29b-2-5p and HK2 was explored by luciferase reporter gene assay. Pulmonary fibrosis cell model was induced by transforming growth factor-ß 1 (TGF-ß 1) in MRC-5 cells, and the medicated serum of DZP (DMS) was prepared in rats. MRC-5 cells were divided into control, TGF-ß 1, TGF-ß 1+10% DMS, TGF-ß 1+10% DMS+miR-29b-2-5p inhibitor, TGF-ß 1+10% DMS+inhibitor negative control, TGF-ß 1+10% DMS+miR-29b-2-5p mimic and TGF-ß 1+10% DMS+mimic negative control groups. After miR-29b-2-5p mimics and inhibitors were transfected into MRC-5 cells, all groups except control and model group were treated with DMS. The effect of DMS on MRC-5 cells were detected using aforementioned methods and immunofluorescence. Similarly, the contents of glucose, ATP and lactate in each group were measured by ELISA. RESULTS: The mRNA and protein expressions of HK2 in MRC-5 cells were successfully silenced and overexpressed through si-HK2-3 and lentiviral transfection, respectively. After silencing HK2, the mRNA and protein expressions of HK2 were significantly decreased (P<0.01), and the concentrations of glucose, ATP and lactate were also significantly decreased (P<0.05). The proliferation, migration and invasion of MRC-5 cells were significantly declined (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly increased (P<0.01). After overexpressing HK2, the mRNA and protein expressions of HK2 were significantly increased (P<0.05), and the concentrations of glucose, ATP and lactate were also significantly increased (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were significantly increased (P<0.05 or P<0.01), while the apoptosis of MRC-5 cells was significantly decreased (P<0.05). The relative luciferase activity of 3'UTR-WT+hsa-miR-29b-2-5p transfected with HK2 was significantly decreased (P<0.01). After miR-29b-2-5p mimic and inhibitor were transfected into the MRC-5 cells, DMS intervention could significantly reduce the concentration of glucose, ATP and lactate, and the mRNA and proteins expressions of HK2, phosphofructokinase and pyruvate kinase isoform M2 (P<0.05 or P<0.01). The proliferation, migration and invasion of MRC-5 cells were alleviated (P<0.05 or P<0.01), and the deposition of fibronectin, α-smooth muscle actin, and collagen I were significantly decreased (P<0.05 or P<0.01). CONCLUSIONS: Glycolysis is closely related to pulmonary fibrosis. DZP reduced glycolysis and inhibited fibroblasts' excessive differentiation and abnormal collagen deposition through the miR-29b-2-5p/HK2 pathway, which played a role in delaying the process of pulmonary fibrosis.

4.
Heliyon ; 10(14): e34405, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39114033

ABSTRACT

Background: Nephrolithiasis, a common and chronic urological condition, exerts significant pressure on both the general public and society as a whole. The precise mechanisms of nephrolith formation remain inadequately comprehended. Nevertheless, the utilization of proteomics methods has not been employed to examine the development of renal calculi in order to efficiently hinder and manage the creation and reappearance of nephrolith. Nowadays, with the rapid development of proteomics techniques, more efficient and more accurate proteomics technique is utilized to uncover the mechanisms underlying diseases. The objective of this study was to investigate the possible alterations of HK-2 cells when exposed to varying amounts of calcium oxalate (CaOx). The aim was to understand the precise development of stone formation and recurrence, in order to find effective preventive and treatment methods. Methods: To provide a complete view of the proteins involved in the development of nephrolithiasis, we utilized an innovative proteomics method called 4D-LFQ proteomic quantitative techniques. HK-2 cells were selected as our experimental subjects. Three groups (n = 3) of HK-2 cells were treated with intervention solutions containing 0 (negative control, NC), 1 mM, and 2 mM CaOx, respectively. For the proteins that showed differential expression, various analyses were conducted including examination of Gene Ontology (GO), Clusters of Orthologous Groups of proteins (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, enrichment analysis of protein domains, and hierarchical clustering analysis. The STRING database was used to identify the interaction network of the chosen proteins. Candidate proteins were validated using parallel reaction monitoring (PRM) in the end. Results: All three groups verified the repeatability of samples. According to the results of 4D-LFQ proteomic quantitative analysis, there were 120, 262, and 81 differentially expressed proteins (DEPs) in the 1 mM-VS-NC, 2 mM-VS-NC, and 2 mM-VS-1mM conditions, respectively. According to GO annotation, the functional enrichment analysis indicates that the differentially expressed proteins (DEPs) were notably enriched in promoting cell migration and the extracellular matrix, among other functions. Analysis of enrichment, based on the KEGG pathway, revealed significant enrichment of DEPs in complement and coagulation cascades, as well as in ECM-receptor (extracellular matrix-receptor) interaction and other related pathways. 14 DEPs of great interest were selected as candidate proteins, including FN1, TFRC, ITGA3, FBN1, HYOU1, SPP1, HSPA5, COL6A1, MANF, HIP1R, JUP, AXL, CTNNB1 and DSG2.The data from PRM demonstrated the variation trend of 14 DEPs was identical as 4D-LFQ proteomic quantitative analysis. Conclusion: Proteomics studies of CaOx-induced HK-2 cells using 4D-LFQ proteomic quantitative analysis and PRM may help to provide crucial potential target proteins and signaling pathways for elucidating the mechanism of nephrolithiasis and better treating nephrolithiasis.

5.
Mol Med ; 30(1): 133, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217289

ABSTRACT

OBJECTIVE: Renal ischemia/reperfusion injury (IRI) is a major cause of acute kidney injury (AKI), which is associated with high incidence and mortality. AST-120 is an oral carbonaceous adsorbent that can alleviate kidney damage. This study aimed to explore the effects of AST-120 on renal IRI and the molecular mechanism. METHODS: A renal IRI mouse model was established and administrated AST-120, and differentially expressed genes were screened using RNA sequencing. Renal function and pathology were analyzed in mice. Hypoxia/reoxygenation (H/R) cell model was generated, and glycolysis was evaluated by detecting lactate levels and Seahorse analysis. Histone lactylation was analyzed by western blotting, and its relationship with hexokinase 2 (HK2) was assessed using chromatin immunoprecipitation. RESULTS: The results showed that HK2 expression was increased after IRI, and AST-120 decreased HK2 expression. Knockout of HK2 attenuated renal IRI and inhibits glycolysis. AST-120 inhibited renal IRI in the presence of HK2 rather than HK2 absence. In proximal tubular cells, knockdown of HK2 suppressed glycolysis and H3K18 lactylation caused by H/R. H3K18 lactylation was enriched in HK2 promoter and upregulated HK2 levels. Rescue experiments revealed that lactate reversed IRI that suppressed by HK2 knockdown. CONCLUSIONS: In conclusion, AST-120 alleviates renal IRI via suppressing HK2-mediated glycolysis, which suppresses H3K18 lactylation and further reduces HK2 levels. This study proposes a novel mechanism by which AST-120 alleviates IRI.


Subject(s)
Carbon , Disease Models, Animal , Glycolysis , Hexokinase , Oxides , Reperfusion Injury , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Animals , Hexokinase/metabolism , Hexokinase/genetics , Glycolysis/drug effects , Mice , Male , Oxides/pharmacology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Mice, Inbred C57BL , Histones/metabolism , Humans , Cell Line
6.
Biochem Biophys Res Commun ; 733: 150425, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39053104

ABSTRACT

Fibroblast growth factor 21 (FGF21), a well-known regulator of metabolic disorders, exhibits the potential to prevent renal fibrosis by negatively regulating the transforming growth factor ß (TGF-ß)/Smad3 signaling pathway. Gemigliptin and other dipeptidyl peptidase-4 inhibitors are frequently used for the management of patients with type 2 diabetes. However, the protective effect of gemigliptin against renal fibrosis, particularly its potential to upregulate the expression of FGF21, remains incompletely understood. This study assessed the renoprotective effects of gemigliptin against TGF-ß-induced renal fibrosis by enhancing the expression of FGF21 in the cultured human proximal tubular epithelial cell line HK-2. Treatment with FGF21 effectively prevented TGF-ß-induced renal fibrosis by attenuating the TGF-ß/Smad3 signaling pathway. Similarly, gemigliptin exhibited protective effects against TGF-ß-induced renal fibrosis by mitigating TGF-ß/Smad3 signaling through the upregulation of FGF21 expression. However, the protective effects of gemigliptin were blocked when FGF21 expression was knocked down in TGF-ß-treated HK-2 cells. These results indicate that gemegliptin has the potential to exhibit protective effects against TGF-ß-induced renal fibrosis by elevating FGF21 expression levels in cultured human proximal tubular epithelial cells.

7.
Toxics ; 12(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39058124

ABSTRACT

Flavored e-cigarettes are a popular alternative to cigarette smoking; unfortunately, the extrapulmonary effects are not well-characterized. Human proximal tubule cells were cultured for 24 or 48 h with 0-1000 µM ethyl vanillin (ETH VAN) and cytotoxicity evaluated. Mitochondrial health was significantly diminished following 48 h of exposure, accompanied by significantly decreased spare capacity, coupling efficiency, and ATP synthase expression. ETH VAN at 24 h inhibited glycolysis. The endoplasmic reticulum (ER) stress marker C/EBP homologous protein (CHOP) was increased at 100 µM relative to 500-1000 µM. The downstream proapoptotic marker cleaved caspase-3 subsequently showed a decreasing trend in expression after 48 h of exposure. The autophagy biomarkers microtubule-associated proteins 1A/1B light chain 3 (LC3B-I and LC3B-II) were measured by Western blot. LC3B-II levels and the LC3B-II/LC3B-I ratio increased at 24 h, which suggested activation of autophagy. In contrast, by 48 h, the autophagy biomarker LC3B-II decreased, resulting in no change in the LC3B-II/LC3B-I ratio. Mitophagy biomarker PTEN-induced putative kinase 1 (PINK1) expression decreased after 48 h of exposure. The downstream marker Parkin was not significantly changed after 24 or 48 h. These findings indicate that the flavoring ETH VAN can induce energy pathway dysfunction and cellular stress responses in a renal model.

8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1135-1140, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977343

ABSTRACT

OBJECTIVE: To investigate the protective effect of dexmedetomidine (DEX) against erastin-induced ferroptosis in human renal tubular epithelial cells (HK-2 cells) and explore the underlying mechanism. METHODS: HK-2 cells were treated with erastin alone or in combination with different concentrations (2.5, 5.0 and 10 µmol/L) of DEX, and the changes in cell viability were observed using CCK-8 assay. To explore the mechanism by which DEX inhibits erastin-induced ferroptosis, HK-2 cells were treated with erastin, erastin+10 µmol/L DEX, or erastin+10 µmol/L DEX+ML385 (a Nrf2 inhibitor), after which the cell viability was assessed. The level of intracellular Fe2+ was detected by cell ferrous iron colorimetric assay kit, and flow cytometry was performed to detect reactive oxygen species (ROS); MDA and reduced glutathione assay kits were used to detect the contents of MDA and GSH in the cells; The expressions of Nrf2, HO-1 and GPX4 proteins were detected by Western blotting. RESULTS: Erastin treatment significantly inhibited the viability of the cells, decreased GSH content, and increased intracellular levels of Fe2+, ROS and MDA. The combined treatment with 10 µmol/L DEX markedly increased the viability of the cells, increased GSH content, reduced the levels of Fe2+, ROS and MDA, and upregulated the protein expressions of Nrf2, HO-1 and GPX4 in the cells. The application of ML385 obviously blocked the protective effect of DEX and caused significant inhibition of the Nrf2/HO-1/GPX4 pathway, decreased the cell viability and GSH content, and increased the levels of Fe2+, ROS and MDA in HK-2 cells. CONCLUSION: The protective effect of DEX against erastin-induced ferroptosis of HK-2 cells is probably mediated by activation of the Nrf2/HO-1/GPX4 pathway to inhibit oxidative stress.


Subject(s)
Cell Survival , Dexmedetomidine , Epithelial Cells , Ferroptosis , Heme Oxygenase-1 , Kidney Tubules , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Humans , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Dexmedetomidine/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Kidney Tubules/cytology , Kidney Tubules/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects , Heme Oxygenase-1/metabolism , Signal Transduction/drug effects , Piperazines/pharmacology
9.
World J Surg Oncol ; 22(1): 193, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054546

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the most common cancers worldwide. Tumor microenvironment plays an important role in tumor progression. This study aims to explore the role of cancer-associated fibroblasts (CAFs) in GC and the underlying mechanism. METHODS: Cell viability, proliferation, invasion and migration were assessed by MTT, EdU, transwell and wound healing assays, respectively. Sphere formation assay was used to evaluate cell stemness. Glucose consumption, lactate production and ATP consumption were measured to assess glycolysis. In addition, The RNA and protein expression were detected by qRT-PCR and western blot. The interaction between wingless Type MMTV Integration Site Family, Member 5 A (WNT5A) and hexokinase 2 (HK2) was verified by Co-immunoprecipitation. The xenograft model was established to explore the function of CAFs on GC tumor growth in vivo. RESULTS: CAFs promoted the proliferation, metastasis, stemness and glycolysis of GC cells. WNT5A was upregulated in CAFs, and CAFs enhanced WNT5A expression in GC cells. Knockdown of WNT5A in either GC cells or CAFs repressed the progression of GC cells. In addition, WNT5A promoted HK2 expression, and overexpression of HK2 reversed the effect of WNT5A knockdown in CAFs on GC cells. Besides, knockdown of WNT5A in CAFs inhibits tumor growth in vivo. CONCLUSION: CAF-derived WNT5A facilitates the progression of GC via regulating HK2 expression.


Subject(s)
Cancer-Associated Fibroblasts , Cell Movement , Cell Proliferation , Glycolysis , Hexokinase , Stomach Neoplasms , Wnt-5a Protein , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Mice , Hexokinase/metabolism , Hexokinase/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured , Mice, Nude , Tumor Microenvironment , Xenograft Model Antitumor Assays , Prognosis , Mice, Inbred BALB C , Apoptosis , Male , Cell Line, Tumor
10.
J Ethnopharmacol ; 335: 118614, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39053708

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperuricemia is a common metabolic disease with prominent morbidity, it can lead to many adverse effects and complications, such as chronic nephrosis. Fucoidan has been used as natural drug for acute and chronic kidney disease for over 20 years in China, but the precise mechanisms underlying the renal protective function are still indefinable. PURPOSE: This study is conducted to explore alleviation of fucoidan (FPS) from Laminaria japonica on urate-induced NOD-like receptor family, pyrin domain-containing 3 (NLRP3)-mediated pyroptosis in renal tubular epithelial cells HK-2, as well as the mechanism of nuclear factor κB (NF-κB) signaling pathway involved. MATERIALS AND METHODS: HK-2 cells were treated with FPS, uric acid (UA), and inhibitor of NF-κB signaling pathway. Nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity were determined with detection kits. Activation of intercellular NLRP3 inflammasome and NF-κB signaling pathway, gasdermin D (GSDMD) expression level were evaluated with Western blot and quantitative reverse transcription-PCR (qRT-PCR), and immunofluorescent analysis. RESULTS: Data showed that UA induced cellular inflammatory response demonstrated by elevated NO content, iNOS activity and expression level of NLRP3 inflammasome-mediated pyroptosis associated molecules including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), Caspase-1, interleukin 18 (IL-18) and GSDMD, moreover the NF-κB signaling pathway was activated by UA. However, FPS exposure inhibited efficiently the UA induced adverse effect. CONCLUSION: It can be concluded that FPS inhibited UA-induced NLRP3-mediated pyroptosis in HK-2 cells through repressing NF-κB signaling pathway.


Subject(s)
Epithelial Cells , Kidney Tubules , Laminaria , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Polysaccharides , Pyroptosis , Signal Transduction , Uric Acid , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , NF-kappa B/metabolism , Humans , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Signal Transduction/drug effects , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Cell Line , Laminaria/chemistry , Kidney Tubules/drug effects , Kidney Tubules/cytology , Kidney Tubules/metabolism , Edible Seaweeds
11.
Curr Med Sci ; 44(4): 707-717, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967891

ABSTRACT

OBJECTIVE: Obesity-induced kidney injury contributes to the development of diabetic nephropathy (DN). Here, we identified the functions of ubiquitin-specific peptidase 19 (USP19) in HK-2 cells exposed to a combination of high glucose (HG) and free fatty acid (FFA) and determined its association with TGF-beta-activated kinase 1 (TAK1). METHODS: HK-2 cells were exposed to a combination of HG and FFA. USP19 mRNA expression was detected by quantitative RT-PCR (qRT-PCR), and protein analysis was performed by immunoblotting (IB). Cell growth was assessed by Cell Counting Kit-8 (CCK-8) viability and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays. Cell cycle distribution and apoptosis were detected by flow cytometry. The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation (Co-IP) assays and IB. RESULTS: In HG+FFA-challenged HK-2 cells, USP19 was highly expressed. USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells. Moreover, USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1 (PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species (ROS) generation in HK-2 cells. Mechanistically, USP19 stabilized the TAK1 protein through deubiquitination. Importantly, increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells. CONCLUSION: The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1, providing a potential therapeutic strategy for combating DN.


Subject(s)
Apoptosis , Glucose , MAP Kinase Kinase Kinases , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Glucose/pharmacology , Apoptosis/drug effects , Cell Line , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , Fatty Acids, Nonesterified/adverse effects , Cell Proliferation/drug effects , Ubiquitination/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Endopeptidases/metabolism , Endopeptidases/genetics , Protein Kinases
12.
Discov Med ; 36(186): 1378-1385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054709

ABSTRACT

OBJECTIVE: To investigate the alleviating effect of chlorogenic acid (CGA) on oxidative damage in high glucose (HG)-induced HK-2 cells and to explore its potential mechanisms. METHODS: We cultured the human proximal tubular cell line HK-2 and divided them into the control group and different concentrations of CGA groups (0, 5, 10, 25, 50, 100, 200 µM). The trypan blue dye test was used to detect CGA's potential cytotoxicity on HK-2 cells. Then, we treated HK-2 with HG and CGA; the Cell Counting Kit-8 (CCK-8) method was used to detect the cell viability of HK-2 cells in each group. Flow cytometry was employed to measure the apoptosis rate of cells. Western blot was performed to detect the expression of apoptosis proteins B-cell lymphoma-2 (BCL-2), BCL-2-associated X protein (BAX), cysteinyl aspartate specific proteinase (CASPASE)-9, and CASPASE-3. In addition, enzymatic activities, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and lipid peroxide (LPO), were measured with the corresponding detection kits. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) assay and flow cytometry were performed to detect reactive oxygen species (ROS) production. Western blot analysis and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) were conducted to evaluate protein and mRNA expressions of the Kelch-like ECH-associated protein-1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2)/Antioxidant Response Elements (ARE) signaling pathway. RESULTS: The outcomes showed that, in a dose-dependent way, CGA dramatically increased the vitality of HK-2 induced by HG. Furthermore, CGA significantly reduced the HG-stimulated HK-2 cell apoptosis, which may be linked to the promotion of BCL-2 and the suppression of BAX, cleaved-CASPASE-3, and cleaved-CASPASE-9 expression. In HK-2 cells, CGA reduced the formation of ROS generated by HG levels and markedly boosted the activity of the antioxidant enzymes SOD, GSH-Px, and CAT. Furthermore, compared with the HG group, CGA significantly raised NRF2 nuclear expression and downregulated NRF2 cytosolic expression and increased the mRNA expression of NRF2 and its target genes, heme oxygenase-1 (HO-1), KEAP1, and NAD(P)H dehydrogenase quinone 1 (NQO1). CONCLUSION: These results show that CGA might be useful in managing oxidative damage in HG-induced HK-2 cells.


Subject(s)
Apoptosis , Chlorogenic Acid , Glucose , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Humans , NF-E2-Related Factor 2/metabolism , Chlorogenic Acid/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Cell Line , Apoptosis/drug effects , Antioxidant Response Elements/drug effects , Cell Survival/drug effects , Reactive Oxygen Species/metabolism
13.
J Cell Mol Med ; 28(13): e18471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984951

ABSTRACT

Diabetes mellitus is a major cause of blindness and chronic ulcers in the working-age population worldwide. Wound healing is deeply dependent on neovascularization to restore blood flow. Former research has found that differentially expressed circular RNAs (circRNAs) are associated with hyperglycaemia-induced endothelial cell damage, and hypoxia-pretreated adipose-derived stem cells (ADSCs)-extracellular vesicle (HEV) transplants have a more therapeutic effect to enhance wound healing in diabetic mice by delivery circRNA. The current investigation employed high-throughput sequencing to identify circRNAs that are abnormally expressed between EV and HEV. The regulatory mechanism and predicted targets of one differentially expressed circRNA, circ-IGF1R, were investigated utilizing bioinformatics analyses, luciferase reporter assays, angiogenic differentiation assays, flow cytometric apoptosis analysis and RT-qPCR. Circ-IGF1R expression increased in HEV, and downregulation of circ-IGF1R suppressed and reversed the promotion effect of HEV on angiogenesis in ulcerated tissue. Bioinformatics analyses and luciferase reporter assays confirmed that miR-503-5p was the downstream target of circ-IGF1R, and inhibiting miR-503-5p restored the promotion effect of HEV on angiogenesis after circ-IGF1R silence. The study also found that miR-503-5p can interact with 3'-UTR of both HK2 and VEGFA. Overexpression of HK2 or VEGFA restored the promotion effect of HExo on angiogenesis after circ-IGF1R silence. Overexpression miR-503-5p or silence HK2/VEGFA reversed the protective effect of circ-IGF1R to MLMECs angiogenic differentiation. Overexpression of circ-IGF1R increased the protective effect of HEV on the promotion of wound healing in mice with diabetes. Circ-IGF1R promotes HIF-1α expression through miR-503-5p sponging. Our data demonstrate that circ-IGF1R overexpression EVs from ADSCs suppress high glucose-induced endothelial cell damage by regulating miR-503-5p/HK2/VEGFA axis.


Subject(s)
Extracellular Vesicles , MicroRNAs , RNA, Circular , Receptor, IGF Type 1 , Vascular Endothelial Growth Factor A , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Humans , Stem Cells/metabolism , Male , Gene Expression Regulation , Wound Healing/genetics , Cell Hypoxia/genetics , Signal Transduction , Up-Regulation/genetics , Neovascularization, Physiologic/genetics
14.
Environ Toxicol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023307

ABSTRACT

The clinical application of polymyxin B (PMB) is limited by its nephrotoxic effects, making the reduction of PMB-induced nephrotoxicity has become a pressing concern for clinicians. Tetrahydrocurcumin (THC), known for its beneficial characteristics in biological functions, presents an attractive option for intervention therapy to mitigate PMB-induced nephrotoxicity. However, the underlying mechanism of how THC mitigates PMB-induced nephrotoxicity is still poorly understood. Here, we first evaluated the potential of THC intervention therapy to mitigate PMB-induced nephrotoxicity in an in vitro model of PMB-induced cell injury. Moreover, we demonstrated that THC effectively protected HK-2 cells from PMB-induced apoptosis by using cell counting kit-8 and flow cytometry assay. THC could also suppress PMB-induced endoplasmic reticulum (ER) stress via PERK/eIF2α/ATF4/CHOP pathway. In addition, using PERK inhibitor GSK2606414 to inhibit ER stress also alleviated PMB-induced apoptosis. Taken together, these findings provide novel insights that THC possesses the ability to alleviate PMB-induced nephrotoxicity by inhibiting the ER stress-mediated PERK/eIF2α/ATF4/CHOP axis, which sheds light on the benefits of THC as an intervention strategy to reduce PMB-induced nephrotoxicity, thus providing a potential avenue for improved clinical outcomes in patients receiving PMB treatment.

15.
J Cell Biochem ; 125(8): e30613, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860522

ABSTRACT

The importance of protein kinase B (AKT) in tumorigenesis and development is well established, but its potential regulation of metabolic reprogramming via phosphorylation of the hexokinase (HK) isozymes remains unclear. There are two HK family members (HK1/2) and three AKT family members (AKT1/2/3), with varied distribution of AKTs exhibiting distinct functions in different tissues and cell types. Although AKT is known to phosphorylate HK2 at threonine 473, AKT-mediated phosphorylation of HK1 has not been reported. We examined direct binding and phosphorylation of HK1/2 by AKT1 and identified the phosphorylation modification sites using coimmunoprecipitation, glutathione pull-down, western blotting, and in vitro kinase assays. Regulation of HK activity through phosphorylation by AKT1 was also examined. Uptake of 2-[1,2-3H]-deoxyglucose and production of lactate were investigated to determine whether AKT1 regulates glucose metabolism by phosphorylating HK1/2. Functional assays, immunohistochemistry, and tumor experiments in mice were performed to investigate whether AKT1-mediated regulation of tumor development is dependent on its kinase activity and/or the involvement of HK1/2. AKT interacted with and phosphorylated HK1 and HK2. Serine phosphorylation significantly increased AKT kinase activity, thereby enhancing glycolysis. Mechanistically, the phosphorylation of HK1 at serine 178 (S178) by AKT significantly decreased the Km and enhanced the Vmax by interfering with the formation of HK1 dimers. Mutations in the AKT phosphorylation sites of HK1 or HK2 significantly abrogated the stimulatory characteristics of AKT on glycolysis, tumorigenesis, and cell migration, invasion, proliferation, and metastasis. HK1-S178 phosphorylation levels were significantly correlated with the occurrence and metastasis of different types of clinical tumors. We conclude that AKT not only regulates tumor glucose metabolism by directly phosphorylating HK1 and HK2, but also plays important roles in tumor progression, proliferation, and migration.


Subject(s)
Carcinogenesis , Hexokinase , Proto-Oncogene Proteins c-akt , Hexokinase/metabolism , Hexokinase/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Humans , Animals , Phosphorylation , Mice , Carcinogenesis/metabolism , Carcinogenesis/genetics , Neoplasm Metastasis , Female , Cell Line, Tumor , Cell Proliferation , Cell Movement , Glucose/metabolism
16.
Clin Chim Acta ; 561: 119831, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38925436

ABSTRACT

Accurate diagnosis of ulcerative colitis (UC) and Crohn's disease (CD), the main subtypes of inflammatory bowel disease (IBD), has been challenging due to the constraints of the current techniques. N6-methyl adenosine (m6A) regulators have evolved as key players in IBD pathogenesis; however, their relation to its clinical setting is largely unexplored. This study investigated the potential of selected RNA methylation machinery and m6A target genes as serum biomarkers of UC and CD, their predictive and discriminating capabilities, and their correlations with laboratory data, interleukin (IL)-6, interferon-γ, disease activity scores, and pathological features. Fifty UC and 45 CD patients, along with 30 healthy volunteers were enlisted. The mRNA expression levels of the m6A writers methyltransferase-like 3 (METTL3) and Wilms-tumor associated protein (WTAP), and the reader YTH domain family, member 1 (YTHDF1), along with the m6A candidate genes sex determining region Y-box 2 (SOX2), hexokinase 2 (HK2), and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) were upregulated in UC patients, whereas only METTL3, HK2, and UBE2L3 were upregulated in CD patients versus controls. Serum WTAP (AUC = 0.94, 95 %CI = 0.874-1.006) and HK2 (AUC = 0.911, 95 %CI = 0.843-0.980) expression levels showed excellent diagnostic accuracy for UC, METTL3 showed excellent diagnostic accuracy for CD (AUC = 0.91, 95 %CI = 0.828-0.992), meanwhile, WTAP showed excellent discriminative power between the two diseases (AUC = 0.91, 95 %CI = 0.849-0.979). Multivariate logistic analysis unveiled the association of METTL3 and UBE2L3 expression with the risk of CD and UC diagnosis, respectively, controlled by age and sex as confounders. Remarkable correlations were recorded between the gene expression of studied m6A regulators and targets in both diseases. Among UC patients, serum METTL3 and WTAP were correlated with UC extent/type, while WTAP was correlated with IL-6. Among CD patients, serum METTL3 and HK2 were correlated with CD activity index (CDAI) and CD location. In conclusion, m6A regulators and target genes are distinctly expressed in UC and CD clinical samples, correlate with disease activity and extent/location, and could serve as a novel approach to empower the diagnosis and stratification of IBD subtypes.


Subject(s)
Biomarkers , Colitis, Ulcerative , Crohn Disease , Cytokines , Humans , Crohn Disease/blood , Crohn Disease/genetics , Crohn Disease/diagnosis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Biomarkers/blood , Male , Female , Adult , Methylation , Cytokines/blood , Cytokines/genetics , Middle Aged , Adenosine/analogs & derivatives , Adenosine/blood , Methyltransferases/genetics , Methyltransferases/blood , Young Adult , RNA/blood , RNA/genetics , RNA Methylation
17.
Medicina (Kaunas) ; 60(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929492

ABSTRACT

Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.


Subject(s)
Kidney Tubules, Proximal , Reperfusion Injury , Selenoprotein P , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Biomarkers/analysis , Cell Line , Cell Survival , In Vitro Techniques , Kidney Tubules, Proximal/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Selenoprotein P/blood , Selenoprotein P/metabolism , Sodium Selenite/pharmacology
18.
Biomolecules ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927058

ABSTRACT

The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.


Subject(s)
Retina , Voltage-Dependent Anion Channels , Humans , Voltage-Dependent Anion Channels/metabolism , Retina/metabolism , Animals , Oxidative Stress , Retinal Diseases/metabolism , Retinal Diseases/pathology , Mitochondria/metabolism , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
19.
Cell Biochem Biophys ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878099

ABSTRACT

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes characterized by structural and functional changes of kidneys. Human renal tubular epithelial (HK-2) cells are important for kidney recovery post injury and usually used for establishment of DN cell models. The study explored the role of microRNA (miR)-133a-3p in DN cell model and animal model. A cell model for DN was established via high glucose (HG) stimulation to HK-2 cells. Cell viability and apoptotic rate were measured by cell counting kit 8 and flow cytometry. Polymerase chain reaction was performed to quantify levels of miR-133a-3p and targets. Luciferase reporter assay was conducted to verify the binding of miR-133a-3p and MAML1. After establishment of a mouse model of DN, levels of renal function indicators were measured by biochemical analysis. Hematoxylin-eosin and periodic acid-schiff staining of kidney samples were performed to analyze histological changes. Western blotting was conducted to quantify levels of apoptotic markers, MAML1, and factors related to Notch signaling. Results showed that HG induced HK-2 cell apoptosis and the reduction of cell viability. MiR-133a-3p was lowly expressed in HG-stimulated HK-2 cells. Overexpressed miR-133a-3p improved HK-2 cell injury by increasing cell viability and hampering apoptosis under HG condition. In addition, miR-133a-3p directly targets MAML1 3'-untranslated region. MAML1 overexpression countervailed the repressive impact of miR-133a-3p on cell apoptosis in the context of HG. Moreover, miR-133a-3p inhibited the activity of Notch pathway by downregulating MAML1. MiR-133a-3p inhibits DN progression in mice, as evidenced by reduced fasting blood glucose level, improved levels of renal function parameters, and alleviation of kidney atrophy. In conclusion, miR-133a-3p improves HG-induced HK-2 cell injury and inhibits DN progression by targeting MAML1 and inactivating Notch signaling.

20.
Cancer Sci ; 115(8): 2673-2685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801832

ABSTRACT

Aberrant signaling in tumor cells induces nonmetabolic functions of some metabolic enzymes in many cellular activities. As a key glycolytic enzyme, the nonmetabolic function of hexokinase 2 (HK2) plays a role in tumor immune evasion. However, whether HK2, dependent of its nonmetabolic activity, plays a role in human pancreatic ductal adenocarcinoma (PDAC) tumorigenesis remains unclear. Here, we demonstrated that HK2 acts as a protein kinase and phosphorylates IκBα at T291 in PDAC cells, activating NF-κB, which enters the nucleus and promotes the expression of downstream targets under hypoxia. HK2 nonmetabolic activity-promoted activation of NF-κB promotes the proliferation, migration, and invasion of PDAC cells. These findings provide new insights into the multifaceted roles of HK2 in tumor development and underscore the potential of targeting HK2 protein kinase activity for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Proliferation , Hexokinase , NF-KappaB Inhibitor alpha , NF-kappa B , Pancreatic Neoplasms , Humans , Hexokinase/metabolism , Hexokinase/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Phosphorylation , Cell Line, Tumor , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Disease Progression , Animals , Cell Movement , Mice , Signal Transduction , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL