Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 274: 116566, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38838545

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.


Subject(s)
Benzimidazoles , Drug Discovery , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Parkinson Disease , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase/metabolism , Humans , Animals , Structure-Activity Relationship , Mice , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Parkinson Disease/drug therapy , Molecular Structure , Dose-Response Relationship, Drug , Male , Mice, Inbred C57BL , Antiparkinson Agents/pharmacology , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/chemistry , Antiparkinson Agents/therapeutic use
2.
Bioorg Chem ; 141: 106817, 2023 12.
Article in English | MEDLINE | ID: mdl-37690318

ABSTRACT

A novel series of phthalimide-hydroxypyridinone derivatives were rationally designed and evaluated as potential anti-Alzheimer's disease (AD) agents. Bioactivity tests showed that all compounds displayed great iron ions-chelating activity (pFe3+ = 17.07-19.52), in addition to potent inhibition of human monoamine oxidase B (hMAO-B). Compound 11n emerged as the most effective anti-AD lead compound with a pFe3+ value of 18.51, along with selective hMAO-B inhibitory activity (IC50 = 0.79 ± 0.05 µM, SI > 25.3). The results of cytotoxicity assays demonstrated that 11n showed extremely weak toxicity in PC12 cell line at 50 µM. Additionally, compound 11n displayed a cytoprotective effect against H2O2-induced oxidative damage. Moreover, compound 11n exhibited ideal blood-brain barrier (BBB) permeability in the parallel artificial membrane permeation assay (PAMPA), and significantly improved scopolamine-induced cognitive and memory impairment in mice behavioral experiments. In conclusion, these favorable experimental results suggested compound 11n deserved further investigation as an anti-AD lead compound.


Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Hydrogen Peroxide , Structure-Activity Relationship , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Drug Design , Monoamine Oxidase/metabolism , Phthalimides/pharmacology , Amyloid beta-Peptides , Acetylcholinesterase/metabolism
3.
Bioorg Chem ; 115: 105233, 2021 10.
Article in English | MEDLINE | ID: mdl-34390968

ABSTRACT

Up to date, the current clinical practice employs only symptomatic treatments for management of Parkinson's disease (PD) but unable to stop disease progression. The discovery of new chemical entities endowed with potent and selective human monoamine oxidase B (hMAO-B) inhibitory activity is a clinically relevant subject. Herein, a structural optimization strategy for safinamide (a well-known second generation hMAO-B inhibitor) afforded a series of thirty-six safinamide-derived new analogs (4aa-bj). Most compounds showed promising inhibitory activities against hMAO-B (>70% inhibition at a single dose concentration of 10 µM), with no apparent effect on hMAO-A at 100 µM. Moreover, while six compounds (4ak, 4as, 4az, 4be, 4bg, and 4bi) exhibited potent double-digit nanomolar activities over hMAO-B with IC50 values of 29.5, 42.2, 22.3, 18.8, 42.2, and 33.9 nM, respectively, three derivatives (4aq, 4at, and 4bf), possessing the same carboxamide moiety (2-pyrazinyl), showed the most potent single-digit nanomolar activities (IC50 = 9.7, 5.1, and 3.9 nM, respectively). Compound 4bf revealed an excellent selectivity index (SI > 25641) with a 29-fold increase compared to safinamide (SI > 892). A structure activity relationship along with molecular docking simulations provided insights into enzyme - inhibitor interactions and a rational for the observed activity. In an in vivo MPTP-induced mouse model of PD, oral administration of compound 4bf significantly protected nigrostriatal dopaminergic neurons as revealed by tyrosine hydroxylase staining and prevented MPTP-induced Parkinsonism as revealed by motor behavioral assays. Accordingly, we present compound 4bf as a novel, highly potent, and selective hMAO-B inhibitor with an effective therapeutic profile for relieving PD.


Subject(s)
Alanine/analogs & derivatives , Benzylamines/pharmacology , Drug Discovery , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Alanine/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Benzylamines/chemical synthesis , Benzylamines/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Parkinson Disease/metabolism , Structure-Activity Relationship
4.
Bioorg Med Chem ; 24(8): 1741-8, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26964672

ABSTRACT

Based on our recently reported selective hMAO-A inhibitors, on which, the intramolecular cyclization led to a very interesting change of isoform selectivity. A series of selective hMAO-B inhibitors (3a-3u) with novel scaffold of tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one were designed and synthesized. Compound 3u (IC50=221 nM) exhibited the best inhibitory activity and isoform selectivity against hMAO-B, superior to selegiline (IC50=321 nM), which is a commercial selective hMAO-B inhibitor used to Parkinson's disease. Modeling study indicated that the selectivity of our compounds to hMAO-B is determined by at least two residues, i.e., Ile 199 and Cys 172 (or corresponded Phe 208 and Asn 181 of hMAO-A). These data support further studies to assess rational design of more efficiently selective hMAO-B inhibitors.


Subject(s)
Benzoxazines/pharmacology , Drug Design , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Pyrazoles/pharmacology , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Monoamine Oxidase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL