Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999968

ABSTRACT

Renal cell carcinoma (RCC) accounts for approximately 90-95% of all kidney cancers in adults, with clear cell RCC (ccRCC) being the most frequently identified subtype. RCC is known for its responsiveness to immunotherapy, making it an area of significant research interest. Immune checkpoint (IC) molecules, which regulate immune surveillance, are established therapeutic targets in RCC. The aim of this study was to analyze the influence of HVEM and CD160 gene polymorphisms on ccRCC susceptibility and patient overall survival (OS) over a ten-year period of observation. We genotyped three HVEM single nucleotide polymorphisms (SNPs): rs1886730, rs2234167, and rs8725, as well as two CD160 SNPs: rs744877 and rs2231375, in 238 ccRCC patients and 521 controls. Our findings indicated that heterozygosity within rs2231375 and/or rs2234167 increases ccRCC risk. Furthermore, in women, heterozygosity within HVEM SNPs rs8725 and rs1886730 is also associated with an increased ccRCC risk. The presence of a minor allele for rs1886730, rs2234167, rs8725, and rs2231375 was also correlated with certain clinical features of ccRCC. Moreover, rs1886730 was found to be associated with OS. In conclusion, our study highlights an association between HVEM and CD160 polymorphisms and the risk of developing ccRCC as well as OS.


Subject(s)
Antigens, CD , Carcinoma, Renal Cell , GPI-Linked Proteins , Genetic Predisposition to Disease , Kidney Neoplasms , Polymorphism, Single Nucleotide , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Female , Male , Receptors, Tumor Necrosis Factor, Member 14/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/pathology , Middle Aged , Antigens, CD/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Aged , GPI-Linked Proteins/genetics , Receptors, Immunologic/genetics , Adult , Case-Control Studies , Genotype
2.
Oncoimmunology ; 13(1): 2372118, 2024.
Article in English | MEDLINE | ID: mdl-38939518

ABSTRACT

The need for reliable biomarkers to predict clinical benefit from anti-PD1 treatment in metastatic melanoma (MM) patients remains unmet. Several parameters have been considered in the tumor environment or the blood, but none has yet achieved sufficient accuracy for routine clinical practice. Whole blood samples from MM patients receiving second-line anti-PD1 treatment (NCT02626065), collected longitudinally, were analyzed by flow cytometry to assess the immune cell subsets absolute numbers, the expression of immune checkpoints or ligands on T cells and the functionality of innate immune cells and T cells. Clinical response was assessed according to Progression-Free Survival (PFS) status at one-year following initiation of anti-PD1 (responders: PFS > 1 year; non-responders: PFS ≤ 1 year). At baseline, several phenotypic and functional alterations in blood immune cells were observed in MM patients compared to healthy donors, but only the proportion of polyfunctional memory CD4+ T cells was associated with response to anti-PD1. Under treatment, a decreased frequency of HVEM on CD4+ and CD8+ T cells after 3 months of treatment identified responding patients, whereas its receptor BTLA was not modulated. Both reduced proportion of CD69-expressing CD4+ and CD8+ T cells and increased number of polyfunctional blood memory T cells after 3 months of treatment were associated with response to anti-PD1. Of upmost importance, the combination of changes of all these markers accurately discriminated between responding and non-responding patients. These results suggest that drugs targeting HVEM/BTLA pathway may be of interest to improve anti-PD1 efficacy.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Adult , Aged , Female , Humans , Male , Middle Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Treatment Outcome
3.
Front Immunol ; 15: 1362152, 2024.
Article in English | MEDLINE | ID: mdl-38835768

ABSTRACT

Introduction: The effector function of T cells is regulated via immune checkpoints, activating or inhibiting the immune response. The BTLA-HVEM complex, the inhibitory immune checkpoint, may act as one of the tumor immune escape mechanisms. Therefore, interfering with the binding of these proteins can prove beneficial in cancer treatment. Our study focused on peptides interacting with HVEM at the same place as BTLA, thus disrupting the BTLA-HVEM interaction. These peptides' structure and amino acid sequences are based on the gD protein, the ligand of HVEM. Here, we investigated their immunomodulatory potential in melanoma patients. Methods: Flow cytometry analyses of activation, proliferation, and apoptosis of T cells from patients were performed. Additionally, we evaluated changes within the T cell memory compartment. Results: The most promising compound - Pep(2), increased the percentages of activated T cells and promoted their proliferation. Additionally, this peptide affected the proliferation rate and apoptosis of melanoma cell line in co-culture with T cells. Discussion: We conclude that the examined peptide may act as a booster for the immune system. Moreover, the adjuvant and activating properties of the gD-derived peptide could be used in a combinatory therapy with currently used ICI-based treatment. Our studies also demonstrate that even slight differences in the amino acid sequence of peptides and any changes in the position of the disulfide bond can strongly affect the immunomodulatory properties of compounds.


Subject(s)
Lymphocyte Activation , Melanoma , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , T-Lymphocytes , Humans , Melanoma/immunology , Melanoma/drug therapy , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects , Female , Male , Middle Aged , Cell Proliferation/drug effects , Aged , Cell Line, Tumor , Adult , Apoptosis/drug effects , Peptides/pharmacology , Peptides/immunology , Gangliosides/immunology
4.
Front Immunol ; 15: 1365174, 2024.
Article in English | MEDLINE | ID: mdl-38774873

ABSTRACT

Introduction: Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods: To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results: Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion: While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.


Subject(s)
Animals, Newborn , Neonatal Sepsis , Signal Transduction , Animals , Mice , Neonatal Sepsis/immunology , Neonatal Sepsis/mortality , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Disease Models, Animal , Female , Heart Diseases/etiology , Heart Diseases/immunology , Lung/immunology , Lung/pathology , Sepsis/immunology , Sepsis/metabolism
5.
Biomed Pharmacother ; 175: 116675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733770

ABSTRACT

The complex of B- and T-lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) plays a critical role in immune regulation and has emerged as a promising therapeutic target for cancer treatment. In this study, we investigated the potential of the peptide inhibitor HVEM(14-39) to restore peripheral T cell activity in patients with advanced melanoma. In these patients, CD8+ T cells downregulated BTLA expression and increased HVEM expression upon activation. The addition of HVEM(14-39) reduced the percentage of BTLA+ CD8+ T cells and increased the subpopulation of HVEM+ CD8+ T cells. Additionally, HVEM(14-39) enhanced T cell activation, proliferation, and the shift toward effector memory T cell subpopulations. Finally, this peptide affected the proliferation rate and late apoptosis of melanoma cell line in co-culture with T cells. These findings suggest that HVEM(14-39) can overcome T cell exhaustion and improve antitumor responses. Peptide-based immunotherapy targeting the BTLA-HVEM complex offers a promising alternative to monoclonal antibody-based therapies, with the potential for fewer side effects and higher treatment efficacy.


Subject(s)
Cell Proliferation , Melanoma , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Apoptosis/drug effects , Male , Female , Middle Aged , Peptide Fragments/pharmacology , Aged , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
6.
Cell Oncol (Dordr) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809326

ABSTRACT

PURPOSE: Leukaemia remains a major contributor to global mortality, representing a significant health risk for a substantial number of cancer patients. Despite notable advancements in the field, existing treatments frequently exhibit limited efficacy or recurrence. Here, we explored the potential of abolishing HVEM (herpes virus entry mediator, TNFRSF14) expression in tumours as an effective approach to treat acute lymphoblastic leukaemia (ALL) and prevent its recurrence. METHODS: The clinical correlations between HVEM and leukaemia were revealed by public data analysis. HVEM knockout (KO) murine T cell lymphoblastic leukaemia cell line EL4 were generated using CRISPR-Cas9 technology, and syngeneic subcutaneous tumour models were established to investigate the in vivo function of HVEM. Immunohistochemistry (IHC), RNA-seq and flow cytometry were used to analyse the tumour immune microenvironment (TIME) and tumour draining lymph nodes (dLNs). Immune functions were investigated by depletion of immune subsets in vivo and T cell functional assays in vitro. The HVEM mutant EL4 cell lines were constructed to investigate the functional domain responsible for immune escape. RESULTS: According to public databases, HVEM is highly expressed in patients with ALL and acute myeloid leukemia (AML) and is negatively correlated with patient prognosis. Genetic deletion of HVEM in EL4 cells markedly inhibited tumour progression and prolonged the survival of tumour-bearing mice. Our experiments proved that HVEM exerted its immunosuppressive effect by inhibiting antitumour function of CD8+ T cell through CRD1 domain both in vivo and in vitro. Additionally, we identified a combination therapy capable of completely eradicating ALL tumours, which induces immune memory toward tumour protection. CONCLUSIONS: Our study reveals the potential mechanisms by which HVEM facilitates ALL progression, and highlights HVEM as a promising target for clinical applications in relapsed ALL therapy.

7.
Breast Cancer ; 31(3): 358-370, 2024 May.
Article in English | MEDLINE | ID: mdl-38483699

ABSTRACT

Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.


Subject(s)
Breast Neoplasms , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Female , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/etiology , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology
8.
Eur J Med Chem ; 268: 116231, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387336

ABSTRACT

The BTLA-HVEM complex plays a pivotal role in cancer and cancer immunotherapy by regulating immune responses. Dysregulation of BTLA and HVEM expression contributes to immunosuppression and tumor progression across various cancer types. Targeting the interaction between BTLA and HVEM holds promise for enhancing anti-tumor immune responses. Disruption of this complex presents a valuable avenue for advancing cancer immunotherapy strategies. Aberrant expression of BTLA and HVEM adversely affects immune cell function, particularly T cells, exacerbating tumor evasion mechanisms. Understanding and modulating the BTLA-HVEM axis represents a crucial aspect of designing effective immunotherapeutic interventions against cancer. Here, we summarize the current knowledge regarding the structure and function of BTLA and HVEM, along with their interaction with each other and various immune partners. Moreover, the expression of soluble and transmembrane forms of BTLA and HVEM in different types of cancer and their impact on the prognosis of patients is also discussed. Additionally, inhibitors of the proteins binding that might be used to block BTLA-HVEM interaction are reviewed. All the presented data highlight the plausible clinical application of BTLA-HVEM targeted therapies in cancer and autoimmune disease management. However, further studies are required to confirm the practical use of this concept. Despite the increasing number of reports on the BTLA-HVEM complex, many aspects of its biology and function still need to be elucidated. This review can be regarded as an encouragement and a guide to follow the path of BTLA-HVEM research.


Subject(s)
Neoplasms , Receptors, Immunologic , Humans , Receptors, Tumor Necrosis Factor, Member 14/chemistry , Receptors, Tumor Necrosis Factor, Member 14/metabolism , T-Lymphocytes , Neoplasms/metabolism , Immunotherapy
9.
FASEB J ; 38(2): e23405, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38193542

ABSTRACT

Airway smooth muscle (ASM) remodeling in asthmatic airways may contribute to persistent airflow limitation and airway hyperresponsiveness. CD4+ T cells infiltrate the ASM layer where they may induce a proliferative and secretory ASM cell phenotype. We studied the interaction between activated CD4+ T cells and ASM cells in co-culture in vitro and investigated the effects of CD4+ T cells on chemokine production by ASM cells. CD4+ T cells induced marked upregulation of C-X-C motif chemokine ligands (CXCL) 9, 10, and 11 in ASM cells. Blockade of the IFN-γ receptor on ASM cells prevented this upregulation. Furthermore, T cell-derived IFN-γ and LIGHT (lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) synergize in a dose-dependent manner to coordinately enhance CXCL9, 10, and 11 expression. The synergistic property of LIGHT was mediated exclusively through the lymphotoxin-ß receptor (LTBR), but not herpes virus entry mediator (HVEM). Disruption of LTBR signaling in ASM cells reduced CXCL9, 10, and 11 production and ASM cell-mediated CD4+ T cell chemotaxis. We conclude that the LIGHT-LTBR signaling axis acts together with IFN-γ to regulate chemokines that mediate lymphocyte infiltration in asthmatics.


Subject(s)
Asthma , T-Lymphocytes , Humans , Myocytes, Smooth Muscle , Muscle, Smooth , Airway Remodeling , CD4-Positive T-Lymphocytes
10.
Eur J Pharm Sci ; 193: 106677, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38128840

ABSTRACT

Immune checkpoints secure the proper function of the immune system and the maintenance of the BTLA-HVEM complex, an inhibitory immune checkpoint, is one of the pathways vital for T cell responsiveness to various stimuli. The present study reports the immunomodulatory potential of five peptides targeting the BTLA-HVEM complex on the activity of human T cells. Isolated T cells were exposed to the peptides alone or combined with CD3/CD28 mAb for 72 h or 120 h. The flow cytometry was used to evaluate the activation markers (CD69, CD62L, CD25), changes within the T cell memory compartment, proliferation rate, and apoptosis of T cells. The immunomodulatory effect of the peptides was visible as an increase in the percentage of CD4+ and CD8+ T cells expressing CD69 or CD25, a boost in T cell proliferation, and shifts in the T cell memory compartment. Pep(2) and Pep(5) were the most promising compounds, displaying a putative immune-restoring function.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, Immunologic , Humans , Peptides/pharmacology , Peptides/chemistry , Immunomodulation , Immunity
11.
mBio ; : e0208723, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874146

ABSTRACT

Membrane fusion mediated by herpes simplex virus 1 (HSV-1) is a complex, multi-protein process that is receptor triggered and can occur both at the cell surface and in endosomes. To deconvolute this complexity, we reconstituted HSV-1 fusion with synthetic lipid vesicles in vitro. Using this simplified, controllable system, we discovered that HSV-1 fusion required not only a cognate host receptor but also low pH. On the target membrane side, efficient fusion required cholesterol, negatively charged lipids found in the endosomal membranes, and an optimal balance of lipid order and disorder. On the virion side, the four HSV-1 entry glycoproteins-gB, gD, gH, and gL-were sufficient for fusion. We propose that low pH is a biologically relevant co-trigger for HSV-1 fusion. The dependence of fusion on low pH and endosomal lipids could explain why HSV-1 enters most cell types by endocytosis. We hypothesize that under neutral pH conditions, other, yet undefined, cellular factors may serve as fusion co-triggers. The in vitro fusion system established here can be employed to systematically investigate HSV-1-mediated membrane fusion.IMPORTANCEHSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.

12.
Mol Cancer ; 22(1): 142, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37649037

ABSTRACT

Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.


Subject(s)
B7-H1 Antigen , Hematologic Neoplasms , Humans , Immunotherapy , Antibodies, Monoclonal/therapeutic use , Signal Transduction , Tumor Microenvironment
13.
Biomed Pharmacother ; 165: 115161, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37473684

ABSTRACT

Immune checkpoints can be divided into co-stimulatory and co-inhibitory molecules that regulate the activation and effector functions of T cells. The co-inhibitory pathways mediated by ICPs are used by cancer cells to escape from immune surveillance, and therefore the blockade of these receptor/ligand interactions is one of the strategies used in the treatment of cancer. The two main pathways currently under investigation are CTLA-4/CD80/CD86 and PD-1/PD-L1, and the monoclonal Abs targeting them have shown potent immunomodulatory effects and activity in clinical environments. Another interesting target in cancer treatment is the BTLA/HVEM complex. Binding of BTLA protein on T cells to HVEM on cancer cells leads to inhibition of T cell proliferation and cytokine production. In the presented work, we focused on blocking the HVEM protein using BTLA-derived peptides. Based on the crystal structure of the BTLA/HVEM complex and MM/GBSA analysis performed here, we designed and synthesized peptides, specifically fragments of BTLA protein. We subsequently checked the inhibitory capacities of these compounds using ELISA and a cellular reporter platform. Two of these peptides, namely BTLA(35-43) and BTLA(33-64)C58Abu displayed the most promising properties, and we therefore performed further studies to evaluate their affinity to HVEM protein, their stability in plasma and their effect on viability of human PBMCs. In addition, the 3D structure for the peptide BTLA(33-64)C58Abu was determined using NMR. Obtained data confirmed that the BTLA-derived peptides could be the basis for future drugs and their immunomodulatory potential merits further examination.


Subject(s)
Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/chemistry , Receptors, Tumor Necrosis Factor, Member 14/metabolism , T-Lymphocytes , Peptides/chemistry , Protein Binding
14.
Anticancer Res ; 43(8): 3419-3427, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500142

ABSTRACT

BACKGROUND/AIM: Several chimeric antigen receptor (CAR) T cells have been used to treat melanoma but have not shown favorable results. This study investigated whether Herpes virus entry mediator (HVEM), which is overexpressed in melanoma, is a potential novel antigen for CAR T cell therapy. MATERIALS AND METHODS: A CAR construct, composed of the BTLA extracellular domain for HVEM recognition (BTLA-28z), was developed and tested. RESULTS: Jurkat cells transduced with BTLA-28z exhibited enhanced IL-2 secretion when incubated with HVEM-over-expressing melanoma cells. KHYG-1 cells transduced with BTLA-28z also lysed melanoma cell lines. Using primary T cells, we generated CAR T cells targeting HVEM. BTLA-28z CAR T cells exhibited excellent lytic activities against melanoma cell lines. CONCLUSION: HVEM-targeting CAR T cells may be useful for the treatment of melanoma.


Subject(s)
Immunotherapy, Adoptive , Melanoma , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Cell Line , Melanoma/therapy , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism
15.
Front Med (Lausanne) ; 10: 1176602, 2023.
Article in English | MEDLINE | ID: mdl-37305124

ABSTRACT

Introduction: The co-regulatory molecule, HVEM, can stimulate or inhibit immune function, but when co-expressed with BTLA, forms an inert complex preventing signaling. Altered HVEM or BTLA expression, separately have been associated with increased nosocomial infections in critical illness. Given that severe injury induces immunosuppression, we hypothesized that varying severity of shock and sepsis in murine models and critically ill patients would induce variable increases in HVEM/BTLA leukocyte co-expression. Methods: In this study, varying severities of murine models of critical illness were utilized to explore HVEM+BTLA+ co-expression in the thymic and splenic immune compartments, while circulating blood lymphocytes from critically ill patients were also assessed for HVEM+BTLA+ co-expression. Results: Higher severity murine models resulted in minimal change in HVEM+BTLA+ co-expression, while the lower severity model demonstrated increased HVEM+BTLA+ co-expression on thymic and splenic CD4+ lymphocytes and splenic B220+ lymphocytes at the 48-hour time point. Patients demonstrated increased co-expression of HVEM+BTLA+ on CD3+ lymphocytes compared to controls, as well as CD3+Ki67- lymphocytes. Both L-CLP 48hr mice and critically ill patients demonstrated significant increases in TNF-α. Discussion: While HVEM increased on leukocytes after critical illness in mice and patients, changes in co-expression did not relate to degree of injury severity of murine model. Rather, co-expression increases were seen at later time points in lower severity models, suggesting this mechanism evolves temporally. Increased co-expression on CD3+ lymphocytes in patients on non-proliferating cells, and associated TNF-α level increases, suggest post-critical illness co-expression does associate with developing immune suppression.

16.
Int Immunopharmacol ; 121: 110494, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331297

ABSTRACT

Hashimoto's thyroiditis is a typical thyroid autoimmune disease and Th17 cells are crucial in its development. In recent years, MIF (Macrophage Migration Inhibitory Factor) has been found to promote the secretion of IL-17A and the production and differentiation of Th17 cells. However, the specific mechanism of it remains unclear. Here, we found that the expression of MIF, IL-17A and HVEM (Herpes Virus Entry Mediator) were up-regulated in HT patients. The proportion of Th17 cells in peripheral blood mononuclear cells was positively correlated with the serum MIF protein level. We further found that the expression of HVEM and the phosphorylation level of NF-κB in peripheral blood mononuclear cells of HT patients were significantly increased. Therefore, we speculated that MIF promotes Th17 cell differentiation through HVEM and NF-κB signaling pathways. Further mechanism studies showed that MIF could directly bind to HVEM, and the stimulation of rhMIF in vitro could increase the expression of HVEM and activate NF-κB signaling pathways to promote Th17 cell differentiation. After blocking HVEM with HVEM antibody, the effect of MIF on Th17 cell differentiation disappeared. The results above show that the differentiation of Th17 cells is promoted by MIF combined with HVEM through NF-κB signaling pathways. Our research provides a new theory to the regulation mechanism of Th17 cell differentiation and gives hint to new potential therapeutic targets for HT.


Subject(s)
Hashimoto Disease , Macrophage Migration-Inhibitory Factors , Humans , Cell Differentiation , Hashimoto Disease/metabolism , Interleukin-17/metabolism , Intramolecular Oxidoreductases/metabolism , Leukocytes, Mononuclear/metabolism , NF-kappa B/metabolism , Signal Transduction , Th17 Cells , Receptors, Tumor Necrosis Factor, Member 14/metabolism
17.
Eur J Cancer ; 187: 147-160, 2023 07.
Article in English | MEDLINE | ID: mdl-37167762

ABSTRACT

Despite over a decade of clinical trials combining inhibition of emerging checkpoints with a PD-1/L1 inhibitor backbone, meaningful survival benefits have not been shown in PD-1/L1 inhibitor resistant or refractory solid tumours, particularly tumours dominated by a myelosuppressive microenvironment. Achieving durable anti-tumour immunity will therefore likely require combination of adaptive and innate immune stimulation, myeloid repolarisation, enhanced APC activation and antigen processing/presentation, lifting of the CD47/SIRPα (Cluster of Differentiation 47/signal regulatory protein alpha) 'do not eat me' signal, provision of an apoptotic 'pro-eat me' or 'find me' signal, and blockade of immune checkpoints. The importance of effectively targeting mLILRB2 and SIRPAyeloid cells to achieve improved response rates has recently been emphasised, given myeloid cells are abundant in the tumour microenvironment of most solid tumours. TNFSF14, or LIGHT, is a tumour necrosis superfamily ligand with a broad range of adaptive and innate immune activities, including (1) myeloid cell activation through Lymphotoxin Beta Receptor (LTßR), (2) T/NK (T cell and natural killer cell) induced anti-tumour immune activity through Herpes virus entry mediator (HVEM), (3) potentiation of proinflammatory cytokine/chemokine secretion through LTßR on tumour stromal cells, (4) direct induction of tumour cell apoptosis in vitro, and (5) the reorganisation of lymphatic tissue architecture, including within the tumour microenvironment (TME), by promoting high endothelial venule (HEV) formation and induction of tertiary lymphoid structures. LTBR (Lymphotoxin beta receptor) and HVEM rank highly amongst a range of costimulatory receptors in solid tumours, which raises interest in considering how LIGHT-mediated costimulation may be distinct from a growing list of immunotherapy targets which have failed to provide survival benefit as monotherapy or in combination with PD-1 inhibitors, particularly in the checkpoint acquired resistant setting.


Subject(s)
Lymphotoxin beta Receptor , Neoplasms , Humans , Programmed Cell Death 1 Receptor , Myeloid Cells , Cytokines , Neoplasms/drug therapy , Immunotherapy , Tumor Microenvironment
18.
Cancer Immunol Immunother ; 72(7): 2529-2539, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37041226

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) progressively develop marked immunosuppression, dampening innate and adaptive-driven antitumor responses. However, the underlying mechanisms promoting immune exhaustion are largely unknown. Herein, we provide new insights into the role of BTLA/HVEM axis promoting defects in T cell-mediated responses against leukemic cells. Increased expression of BTLA, an inhibitory immune checkpoint, was detected on the surface of CD4 + and CD8 + T lymphocytes in patients with CLL. Moreover, high levels of BTLA on CD4 + T cells correlated with diminished time to treatment. Signaling through BTLA activation led to decreased IL-2 and IFN-γ production ex vivo, whereas BTLA/HVEM binding disruption enhanced IFN-γ + CD8 + T lymphocytes. Accordingly, BTLA blockade in combination with bispecific anti-CD3/anti-CD19 antibody promoted CD8 + T cell-mediated anti-leukemic responses. Finally, treatment with an anti-BLTA blocking monoclonal antibody alone or in combination with ibrutinib-induced leukemic cell depletion in vitro. Altogether, our data reveal that BTLA dysregulation has a prognostic role and is limiting T cell-driven antitumor responses, thus providing new insights about immune exhaustion in patients with CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Antigens, CD19/metabolism , Receptors, Immunologic/metabolism
19.
Front Immunol ; 14: 1113858, 2023.
Article in English | MEDLINE | ID: mdl-37033927

ABSTRACT

Introduction: A high frequency of mutations affecting the gene encoding Herpes Virus Entry Mediator (HVEM, TNFRSF14) is a common clinical finding in a wide variety of human tumors, including those of hematological origin. Methods: We have addressed how HVEM expression on A20 leukemia cells influences tumor survival and its involvement in the modulation of the anti-tumor immune responses in a parental into F1 mouse tumor model of hybrid resistance by knocking-out HVEM expression. HVEM WT or HVEM KO leukemia cells were then injected intravenously into semiallogeneic F1 recipients and the extent of tumor dissemination was evaluated. Results: The loss of HVEM expression on A20 leukemia cells led to a significant increase of lymphoid and myeloid tumor cell infiltration curbing tumor progression. NK cells and to a lesser extent NKT cells and monocytes were the predominant innate populations contributing to the global increase of immune infiltrates in HVEM KO tumors compared to that present in HVEM KO tumors. In the overall increase of the adaptive T cell immune infiltrates, the stem cell-like PD-1- T cells progenitors and the effector T cell populations derived from them were more prominently present than terminally differentiated PD-1+ T cells. Conclusions: These results suggest that the PD-1- T cell subpopulation is likely to be a more relevant contributor to tumor rejection than the PD-1+ T cell subpopulation. These findings highlight the role of co-inhibitory signals delivered by HVEM upon engagement of BTLA on T cells and NK cells, placing HVEM/BTLA interaction in the spotlight as a novel immune checkpoint for the reinforcement of the anti-tumor responses in malignancies of hematopoietic origin.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Programmed Cell Death 1 Receptor , Animals , Humans , Mice , Cell Line , Killer Cells, Natural/metabolism , Programmed Cell Death 1 Receptor/genetics , Receptors, Immunologic/metabolism
20.
Cells ; 11(24)2022 12 12.
Article in English | MEDLINE | ID: mdl-36552785

ABSTRACT

B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.


Subject(s)
Neoplasms , Receptors, Immunologic , Humans , Cell Proliferation , MAP Kinase Signaling System , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL