Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663284

ABSTRACT

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Subject(s)
Amodiaquine , Antimalarials , Ferrous Compounds , Metallocenes , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Plasmodium falciparum/drug effects , Metallocenes/chemistry , Metallocenes/pharmacology , Amodiaquine/pharmacology , Amodiaquine/chemistry , Structure-Activity Relationship , Molecular Structure , Humans , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug
2.
Eur J Med Chem ; 264: 115969, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38039787

ABSTRACT

The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Antimalarials/chemistry , Piperazine/pharmacology , Triazoles/chemistry , Chloroquine/pharmacology , Malaria/drug therapy , Plasmodium falciparum , Hemoglobins/metabolism , Hemoglobins/pharmacology , Hemoglobins/therapeutic use
3.
Mini Rev Med Chem ; 23(8): 898-916, 2023.
Article in English | MEDLINE | ID: mdl-36545713

ABSTRACT

One of the most fatal infectious diseases, malaria, still poses a threat to about half of the world's population and is the leading cause of death worldwide. The use of artemisinin-based combination therapy has helped to significantly reduce the number of deaths caused by malaria, but the emergence of drug resistance threatens to undo this gain. In a bid to boost adherence, several new combination therapies with effectiveness against drug-resistant parasites are currently being tested in clinical settings. Nevertheless, notwithstanding these gains, malaria must be completely eradicated by a concerted international effort on several fronts. Quinoline-based compounds were the cornerstone of malaria chemotherapy until recently when resistance to these drugs severely hampered efforts to achieve a "Zero Malaria" world. The inappropriate use of available antimalarials is one of the factors responsible for resistance development and treatment failure, warranting the search for new chemical entities and alternative approaches to combat this threat. A vast number of solutions have emerged and one of them, quinoline-hybridization, is an effective method for introducing structural diversity, resulting in molecules with improved biological activities, reduced drug resistance, fewer drug-drug interactions, and improved safety and pharmacokinetic profiles. Choosing the ideal target combination and achieving a balanced activity toward them while preserving drug-like properties are the key challenges in the development of molecular hybrids. This review examines the highlights of quinoline hybridization, with some of the hybrids exhibiting remarkable in vitro and in vivo activities, emphasizing that it is a useful method for developing new anti-malarial lead compounds.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Quinolines , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/chemistry , Malaria/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use , Drug Resistance , Combined Modality Therapy , Plasmodium falciparum , Malaria, Falciparum/drug therapy
4.
Drug Des Devel Ther ; 14: 4855-4867, 2020.
Article in English | MEDLINE | ID: mdl-33204071

ABSTRACT

Malaria remains a global public health problem due to the uphill fight against the causative Plasmodium parasites that are relentless in developing resistance. Indole-based antiplasmodial compounds are endowed with multiple modes of action, of which inhibition of hemozoin formation is the major mechanism of action reported for compounds such as cryptolepine, flinderoles, and isosungucine. Indole-based compounds exert their potent activity against chloroquine-resistant Plasmodium strains by inhibiting hemozoin formation in a mode of action different from that of chloroquine or through a novel mechanism of action. For example, dysregulating the sodium and osmotic homeostasis of Plasmodium through inhibition of PfATP4 is the novel mechanism of cipargamin. The potential of developing multi-targeted compounds through molecular hybridization ensures the existence of indole-based compounds in the antimalarial pipeline.


Subject(s)
Antimalarials/pharmacology , Calcium-Transporting ATPases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Calcium-Transporting ATPases/metabolism , Enzyme Inhibitors/chemistry , Humans , Indoles/chemistry , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology
5.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32307798

ABSTRACT

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , DNA, Fungal/drug effects , Hemeproteins/antagonists & inhibitors , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cresols/chemistry , Cresols/pharmacology , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Hemeproteins/metabolism , Humans , Metallocenes/chemistry , Metallocenes/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
6.
Int J Parasitol Drugs Drug Resist ; 6(3): 184-198, 2016 12.
Article in English | MEDLINE | ID: mdl-27718413

ABSTRACT

Synthesis of new 1-aryl-3-substituted propanol derivatives followed by structure-activity relationship, in silico drug-likeness, cytotoxicity, genotoxicity, in silico metabolism, in silico pharmacophore modeling, and in vivo studies led to the identification of compounds 22 and 23 with significant in vitro antiplasmodial activity against drug sensitive (D6 IC50 ≤ 0.19 µM) and multidrug resistant (FCR-3 IC50 ≤ 0.40 µM and C235 IC50 ≤ 0.28 µM) strains of Plasmodium falciparum. Adequate selectivity index and absence of genotoxicity was also observed. Notably, compound 22 displays excellent parasitemia reduction (98 ± 1%), and complete cure with all treated mice surviving through the entire period with no signs of toxicity. One important factor is the agreement between in vitro potency and in vivo studies. Target exploration was performed; this chemotype series exhibits an alternative antimalarial mechanism.


Subject(s)
Amino Alcohols/isolation & purification , Amino Alcohols/pharmacology , Antimalarials/isolation & purification , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Amino Alcohols/adverse effects , Amino Alcohols/therapeutic use , Animals , Antimalarials/adverse effects , Antimalarials/therapeutic use , Disease Models, Animal , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Mice , Structure-Activity Relationship , Survival Analysis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...