Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.677
Filter
1.
Int Immunopharmacol ; 142(Pt B): 113159, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303541

ABSTRACT

BACKGROUND: The role of BMAL1 in various diseases remains unclear, particularly its impact on sepsis-induced acute kidney injury (AKI). This study aims to investigate the role of BMAL1 in sepsis-induced AKI and its potential effects on cell ferroptosis. Initially, we assessed BMAL1 expression levels in mice treated with sepsis-induced AKI (via LPS injection) and in LPS-stimulated renal tubular epithelial cells. Subsequently, we explored the correlation between BMAL1 and ferroptosis using sequencing technology, validating our findings throughout experimental approaches. To further elucidate BMAL1's specific effects on AKI-related ferroptosis, we constructed BMAL1 overexpression models in mice and cells, analysing its impact on AKI and ferroptosis both in vivo and in vitro. Furthermore, using transcriptome sequencing technology, we identified key BMAL1-regulated genes and their associated biological pathways, validating these findings through in vivo and in vitro experiments. RESULTS: Our findings indicate decreased BMAL1 expression in sepsis-induced AKI. BMAL1 overexpression effectively mitigated renal tubular injury by reducing ferroptosis levels in renal tubular epithelial cells. Using transcriptome sequencing and ChIP-qPCR technology, we identified YAP as a target of BMAL1. The overexpression of BMAL1 significantly reduced the transcriptional activity of YAP and inhibited the Hippo signalling pathway. Treatment with the Hippo inhibitor Verteporfin (VP) reversed the BMAL1-downregulation-induced damage. Additionally, our study revealed that YAP positively regulates ACSL4 gene expression and its downstream signalling pathways. CONCLUSION: This study demonstrates that BMAL1 overexpression alleviates renal tubular epithelial cell injury and ferroptosis by inhibiting YAP expression and the Hippo pathway, thereby exerting protective effects in sepsis-induced AKI. These findings underscore the therapeutic potential of targeting BMAL1 in managing sepsis-induced AKI.

2.
Bioact Mater ; 42: 613-627, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39314862

ABSTRACT

Clusterzymes are synthetic enzymes exhibiting substantial catalytic activity and selectivity, which are uniquely driven by single-atom constructs. A dramatic increase in antioxidant capacity, 158 times more than natural trolox, is noted when single-atom copper is incorporated into gold-based clusterzymes to form Au24Cu1. Considering the inflammatory and mildly acidic microenvironment characteristic of osteoarthritis (OA), pH-dependent dendritic mesoporous silica nanoparticles (DMSNs) coupled with PEG have been employed as a delivery system for the spatial-temporal release of clusterzymes within active articular regions, thereby enhancing the duration of effectiveness. Nonetheless, achieving high therapeutic efficacy remains a significant challenge. Herein, we describe the construction of a Clusterzymes-DMSNs-PEG complex (CDP) which remarkably diminishes reactive oxygen species (ROS) and stabilizes the chondroprotective protein YAP by inhibiting the Hippo pathway. In the rabbit ACLT (anterior cruciate ligament transection) model, the CDP complex demonstrated inhibition of matrix metalloproteinase activity, preservation of type II collagen and aggregation protein secretion, thus prolonging the clusterzymes' protective influence on joint cartilage structure. Our research underscores the efficacy of the CDP complex in ROS-scavenging, enabled by the release of clusterzymes in response to an inflammatory and slightly acidic environment, leading to the obstruction of the Hippo pathway and downstream NF-κB signaling pathway. This study illuminates the design, composition, and use of DMSNs and clusterzymes in biomedicine, thus charting a promising course for the development of novel therapeutic strategies in alleviating OA.

3.
Cancers (Basel) ; 16(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39272887

ABSTRACT

In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.

4.
Transl Oncol ; 49: 102076, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222611

ABSTRACT

OBJECTIVES: Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer (BC). Tumor-derived extracellular vesicles (EVs) trigger tumor progression by promoting M2 polarization. Some lncRNAs can be encapsulated into EVs for intercellular communication. Herein, we investigated the mechanism of TNBC-derived EV-shuttled lncRNA MALAT1 on macrophage polarization/tumorigenesis. METHODS: BC-associated targeted EV-derived lncRNAs were screened. Tumor tissues/tissues adjacent to cancer of TNBC patients, and blood samples of all subjects were collected. MALAT1/POSTN mRNA levels in tumor tissues/tissues adjacent to cancer, and MALAT1 expression in EVs and its correlation with TNBC patient overall survival were assessed by RT-qPCR/Kaplan-Meier survival analysis/log-rank test. TNBC patient M2 infiltration was detected by flow cytometry. MALAT1/POSTN levels in EVs/macrophages were regulated by transfection. Hippo/YAP activation was determined by Western blot. Nude mouse xenograft model was established and metastasis was detected by H&E staining. RESULTS: MALAT1/POSTN were up-regulated and correlated with M2 infiltration/poor prognosis in TNBC patients. TNBC-derived EVs induced M2 polarization. MALAT1 was highly expressed in TNBC-derived EVs and could be transferred to macrophages via EVs to induce M2 polarization. POSTN overexpression diminished the inhibitory effect of MALAT1 knockdown on M2 markers. EVs activated the Hippo/YAP pathway in macrophages. The Hippo/YAP pathway inhibition abrogated the effect of POSTN overexpression on M2 marker expression. TNBC-EV-derived MALAT1 facilitated M2 polarization, and thus promoting occurrence and metastasis of TNBC in vitro and in vivo. CONCLUSIONS: TNBC-EV-derived MALAT1 activated the Hippo/YAP axis by up-regulating POSTN, thereby inducing M2 polarization to promote TNBC occurrence and metastasis in vivo.

5.
Mechanobiol Med ; 2(4)2024 Dec.
Article in English | MEDLINE | ID: mdl-39281415

ABSTRACT

Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.

6.
Article in English | MEDLINE | ID: mdl-39286872

ABSTRACT

Dihydroartemisinin (DHA), an artemisinin derivative, can influence certain malignancies' inflammatory response and growth. This study used Cell Counting Kit-8 and Transwell assays to show that DHA suppressed the growth, migration, and invasion of medullary thyroid cancer cells. Furthermore, the authors used enzyme-linked immunosorbent assay, Western blotting, and immunofluorescence to confirm the expression of the transcriptional coactivators Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding domain (TAZ) downstream of the Hippo pathway and changes in the expression of the epithelial-mesenchymal transition (EMT) process markers E-cadherin and N-cadherin. These results demonstrate that DHA effectively reduced the expression of interleukin (IL)-6 in medullary thyroid carcinoma (MTC) cells and hindered the EMT process by regulating the Hippo pathway. This regulation was achieved by promoting YAP phosphorylation and inhibiting YAP/TAZ protein expression. Additional activation of the Hippo pathway by GA-017 alleviated the inhibitory effect of DHA on IL-6. Hippo pathway activation led to an increase in the expression of E-cadherin, a marker of EMT. In conclusion, DHA was demonstrated to regulate the Hippo pathway by inhibiting IL-6 secretion, leading to the inhibition of EMT in MTC. These findings provide a theoretical foundation for further exploration of the anticancer mechanisms of DHA and offer valuable insights into its potential clinical application as a combinatorial drug.

7.
FEBS Open Bio ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300603

ABSTRACT

Cholangiocarcinoma (CCA) is a highly aggressive form of liver cancer and is an increasing cause of cancer-related death worldwide. Despite its increasing incidence globally and alarming mortality, treatment options for CCA have largely remained unchanged, stressing the importance of developing new effective therapies. YAP activation is common in CCA, and its major transcriptional signaling partners are the TEAD proteins. CA3 is a small-molecule YAP-TEAD disrupter discovered utilizing a TEAD reporter assay. Utilizing CCA, gastric cancer cell lines, and patient-derived xenograft models (PDX), we demonstrate that CA3 is effective in inducing cell death and delaying tumor growth in both FGFR2 fusion and wild-type models. CA3 was associated with on-target decreases in YAP-TEAD target gene expression, TEAD reporter activity, and overall TEAD levels. Hippo pathway signaling was not altered as there was no change in YAP phosphorylation status in the cells exposed to CA3. RNA sequencing of gastric cancer and CCA models demonstrated upregulation of an androgen receptor-mediated transcriptional program following exposure to CA3 in five unique models tested. Consistent with this upstream regulator analysis, CA3 exposure in CCA cells was associated with increased AR protein levels, and combinatorial therapy with CA3 and androgen receptor blockade was associated with increased cancer cell death. CA3 behaves functionally as a YAP-TEAD disrupter in the models tested and demonstrated therapeutic efficacy. Exposure to CA3 was associated with compensatory androgen receptor signaling and dual inhibition improved the therapeutic effect.

8.
Cancer Lett ; 604: 217244, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260668

ABSTRACT

Cancer-associated fibroblasts (CAFs) are activated fibroblasts that play a role in numerous malignant phenotypes, including hyperproliferation, invasion, and metastasis. These phenotypes correlate with activity of the Hippo pathway oncoprotein, Yes-associated protein-1 (YAP1), and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ). YAP1/TAZ are normally involved in organ growth, under the regulation of various kinases and upon phosphorylation, are retained in the cytoplasm by chaperone proteins, leading to their proteasomal degradation. In CAFs and tumor cells, however, a lack of YAP1 phosphorylation results in its translocation to the nucleus, binding to TEAD transcription factors, and activation of mitogenic pathways. In this review we summarize the literature discussing the central role of YAP1 in CAF activation, the upstream cues that promote YAP1-mediated CAF activation and extracellular matrix remodeling, and how CAFs mediate tumor-stroma crosstalk to support progression, invasion and metastasis in various cancer models. We further highlight YAP1+CAFs functions in modulating an immunosuppressive tumor microenvironment and propose evaluation of several YAP1 targets regarding their role in regulating intra-tumoral immune landscapes. Finally, we propose that co-administration of YAP1- targeted therapies with immune checkpoint inhibitors can improve therapeutic outcomes in patients with advanced tumors.

9.
Cell Mol Biol Lett ; 29(1): 122, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266996

ABSTRACT

BACKGROUND: Zinc finger MIZ-type containing 2 (ZMIZ2) can function as a coactivator and participate in the progression of certain malignant tumors; however, its expression and underlying molecular mechanism in non-small-cell lung cancer (NSCLC) remains unknown. In this study, we aim to analyze the expression of ZMIZ2 and its tumorigenic function in NSCLC, identifying its related factors. METHODS: ZMIZ2 expression in NSCLC tissue samples and cell lines was examined using immunohistochemistry and western blotting; its biological role was investigated using in vivo and in vitro assays. The association between ZMIZ2 and NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was demonstrated using mass spectrometry and immunoprecipitation experiments. Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG)-based enrichment analysis, luciferase reporter assay, and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to verify the impact of ZMIZ2-SIRT1 combination on Hippo/Wnt pathways. RESULTS: ZMIZ2 was highly expressed in NSCLC and positively associated with advanced pTNM staging, lymph node metastasis, and poor overall survival. Functional experiments revealed that ZMIZ2 promotes the proliferation, migration, and invasiveness of lung cancer cells-establishing its role as a promoter of oncogenes. Molecular mechanism studies identified SIRT1 as an assisted key factor interacting with ZMIZ2. KEGG enrichment analysis revealed that ZMIZ2 is closely related to Wnt/Hippo pathways; ZMIZ2-SIRT1 interaction enhanced SIRT1 deacetylase activity. Direct downregulation of intranuclear ß-catenin and yes-associated protein (YAP) acetylation levels occurred independently of upstream proteins in Wnt/Hippo pathways; transcriptional activities of ß-catenin-transcription factor 4 (TCF4) and YAP-TEA domain family transcription factors (TEADs) were amplified. CONCLUSIONS: ZMIZ2 promotes the malignant phenotype of lung cancer by regulating Wnt/Hippo pathways through SIRT1, providing an experimental basis for discovering novel biomarkers and developing tumor-targeted drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Hippo Signaling Pathway , Lung Neoplasms , Protein Inhibitors of Activated STAT , Protein Serine-Threonine Kinases , Sirtuin 1 , Wnt Signaling Pathway , Animals , Female , Humans , Male , Mice , Middle Aged , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Wnt Signaling Pathway/genetics , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism
10.
Mol Biol Rep ; 51(1): 950, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222158

ABSTRACT

BACKGROUND: Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS: In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS: Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS: Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.


Subject(s)
Connective Tissue Growth Factor , Hepatic Stellate Cells , Lysophospholipids , Signal Transduction , Sphingosine , Transcription Factors , YAP-Signaling Proteins , rho-Associated Kinases , rhoA GTP-Binding Protein , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Humans , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism , YAP-Signaling Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Cell Line , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , src-Family Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Hippo Signaling Pathway
11.
EMBO Rep ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271776

ABSTRACT

High grade serous ovarian carcinoma (HGSOC) is the most common and aggressive ovarian malignancy. Accumulating evidence indicates that HGSOC may originate from human fallopian tube epithelial cells (FTECs), although the exact pathogen(s) and/or molecular mechanism underlying the malignant transformation of FTECs is unclear. Here we show that human papillomavirus (HPV), which could reach FTECs via retrograde menstruation or sperm-carrying, interacts with the yes-associated protein 1 (YAP1) to drive the malignant transformation of FTECs. HPV prevents FTECs from natural replicative and YAP1-induced senescence, thereby promoting YAP1-induced malignant transformation of FTECs. HPV also stimulates proliferation and drives metastasis of YAP1-transformed FTECs. YAP1, in turn, stimulates the expression of the putative HPV receptors and suppresses the innate immune system to facilitate HPV acquisition. These findings provide critical clues for developing new strategies to prevent and treat HGSOC.

12.
mBio ; : e0181124, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248565

ABSTRACT

High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.

14.
J Cancer ; 15(16): 5477-5491, 2024.
Article in English | MEDLINE | ID: mdl-39247595

ABSTRACT

Background: ATP11A, a P-type ATPase, functions as flippases at the plasma membrane to maintain cellular function and vitality in several cancers. However, the role of ATP11A in gastric cancer remains unknown. This study aimed to identify ATP11A related to the biological behavior of gastric cancer, and elucidate the underlying mechanism. Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the expression and prognosis of ATP11A. The biofunctions of ATP11A were explored through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA). The expression of ATP11A were validated by immunohistochemistry (IHC), qRT-PCR and Western blotting. Transwell, wound healing, CCK8 and colony-formation were to detected the migration, invasion and proliferation of gastric cancer cells. The epithelial-mesenchymal transition (EMT) and Hippo pathway markers were examined by Western blotting. Results: The expression of ATP11A was higher in gastric cancer tissues than in normal tissues, and high ATP11A levels were related to worse prognosis of gastric cancer patients. Additionally, we proved that ATP11A promoted the migration, invasion and proliferation in gastric cancer cells. Furthermore, ATP11A was found to promote EMT by devitalizing the Hippo pathway. Conclusion: ATP11A promoted migration, invasion, proliferation and EMT via Hippo signaling devitalization in gastric cancer cells.

15.
Int J Biol Sci ; 20(11): 4146-4161, 2024.
Article in English | MEDLINE | ID: mdl-39247829

ABSTRACT

Ferroptosis has attracted extensive interest from cancer researchers due to its substantial potential as a therapeutic target. The role of LATS2, a core component of the Hippo pathway cascade, in ferroptosis initiation in hepatoblastoma (HB) has not yet been investigated. Furthermore, the underlying mechanism of decreased LATS2 expression remains largely unknown. In the present study, we demonstrated decreased LATS2 expression in HB and that LATS2 overexpression inhibits HB cell proliferation by inducing ferroptosis. Increased LATS2 expression reduced glycine and cysteine concentrations via the ATF4/PSAT1 axis. Physical binding between YAP1/ATF4 and the PSAT1 promoter was confirmed through ChIP‒qPCR. Moreover, METTL3 was identified as the writer of the LATS2 mRNA m6A modification at a specific site in the 5' UTR. Subsequently, YTHDF2 recognizes the m6A modification site and recruits the CCR4-NOT complex, leading to its degradation by mRNA deadenylation. In summary, N6-methyladenosine modification of LATS2 facilitates its degradation. Reduced LATS2 expression promotes hepatoblastoma progression by inhibiting ferroptosis through the YAP1/ATF4/PSAT1 axis. Targeting LATS2 is a potential strategy for HB therapy.


Subject(s)
Activating Transcription Factor 4 , Adenosine , Ferroptosis , Hepatoblastoma , Protein Serine-Threonine Kinases , Tumor Suppressor Proteins , YAP-Signaling Proteins , Humans , Hepatoblastoma/metabolism , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , YAP-Signaling Proteins/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Ferroptosis/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Cell Proliferation , Mice, Nude , Mice , Gene Expression Regulation, Neoplastic , Methyltransferases
16.
Insect Sci ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252387

ABSTRACT

How organ size is determined is a fundamental question in life sciences. Recent studies have highlighted the importance of the Hippo pathway in regulating organ size. This pathway controls cell proliferation and cell death to maintain the proper number of cells. The activity of the Hippo pathway is tightly fine-tuned through various post-translational modifications, such as phosphorylation and ubiquitination. Here, we discover that miR-927 is a novel regulator of wing size. Overexpression of miR-927 decreases wing size, which can be rescued by co-expressing miR-927-sponge. Next, we show that miR-927 stimulates apoptosis and suppresses the expression of Drosophila inhibitor of apoptosis protein 1, a well-known target gene of the Hippo pathway. Genetic epistatic analyses position miR-927 upstream of Yorkie (Yki) to modulate the Hippo pathway. In addition, there is a matching miR-927 seed site in the yki 3' untranslated region (3'-UTR), and we demonstrate that yki 3'-UTR is the direct target of miR-927. Ultimately, our study reveals that the targeting of yki by miR-927 to regulate the Hippo pathway is conserved in Helicoverpa armigera. Administration of miR-927 via star polycation (SPc) nanocarrier effectively inhibits wing development in H. armigera. Taken together, our findings uncover a novel mechanism by which Yki is silenced at the post-transcriptional level by miR-927, and provide a new perspective on pest management.

17.
Front Oncol ; 14: 1442911, 2024.
Article in English | MEDLINE | ID: mdl-39224804

ABSTRACT

Introduction: Prostate cancer (PCa), one of the most prevalent malignant tumors in the genitourinary system, is characterized by distant metastasis and the development of castration-resistant prostate cancer (CRPC), which are major determinants of poor prognosis. Current treatment approaches for PCa primarily involve surgery and endocrine therapy, but effective strategies for managing distant metastasis and CRPC remain limited. Methods: We utilized qPCR, WB, and other methods to measure the expression levels of respective proteins, concurrently assessing lipid metabolism to validate the role of FATP5 in lipid metabolism. Additionally, we employed bioinformatics analysis and WB techniques to explore the corresponding mechanisms. Results: In this study, we conducted an analysis of clinical samples and public databases to identify differential expression of FATP5 and further investigated its association with clinical outcomes. Through biochemical and functional experiments, we elucidated the potential underlying mechanisms by which FATP5 facilitates the progression of PCa. Our findings demonstrate that specific upregulation of FATP5 significantly enhances proliferation, migration, and invasion of PCa cell lines, while also modulating lipid metabolism in PCa. Mechanistically, the expression of FATP5 is closely associated with the Hippo signaling pathway, as it promotes the nuclear accumulation of YAP1 by inhibiting AMPK and facilitating the activation of ß-catenin and RHOA. Furthermore, the transcription of FATP5 is mediated by TEAD4, and this transcriptional activation requires the involvement of YAP1. Discussion: FATP5 is highly expressed in prostate cancer and can enhance the biological activity and lipid metabolism of prostate cancer. We have also elucidated that FATP5 is regulated by the Hippo signaling pathway. This provides a new potential target for the treatment of prostate cancer.

18.
Mol Carcinog ; 63(10): 1866-1873, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39092765

ABSTRACT

The tumorigenesis of intrahepatic cholangiocarcinoma (ICC) has been identified to be exceptionally involved in dysregulated Hippo/Yes-associated protein (YAP) signaling pathway (Hippo/YAP). Hippo/YAP functions as a master regulator engaged in a plethora of physiological and oncogenic processes as well. Therefore, the aberrant Hippo/YAP could serve as an Achilles' heel regarding the molecular therapeutic avenues for ICC patients. Herein, we comprehensively review the recent studies about the underlying mechanism of disrupted Hippo/YAP in ICC, how diagnostic values could be utilized upon the critical genes in this pathway, and what opportunities could be given upon this target pathway.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Humans , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Molecular Targeted Therapy/methods , Gene Expression Regulation, Neoplastic
19.
Cell Signal ; 123: 111355, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39173854

ABSTRACT

Liver fibrosis is a chronic pathological process in which the abnormal proliferation of connective tissue is induced by various pathogenic factors. During the process of fibrosis, excessive angiogenesis is observed. Physiological angiogenesis has the potential to impede the progression of liver fibrosis through augmenting matrix metalloenzyme activity; however, pathological angiogenesis can exacerbate liver fibrosis by promoting collagen accumulation. Therefore, a key scientific research focus in the treatment of liver diseases is to search for the "on-off" mechanism that regulates angiogenesis from normal proliferation to pathological proliferation. In this study, we found that excessive angiogenesis appeared during the initial phase of hepatic fibrosis without mesenchymal characteristics. In addition, angiogenesis accompanied by significant endothelial-to-mesenchymal transition (EndMT) was observed in mice after the intraperitoneal injection of angiotensin II (Ang II). Interestingly, the changes in Yes-associated protein (YAP) activity in endothelial cells (ECs) can affect the regulation of angiogenesis by Ang II. The results of in vitro experiments revealed that the regulatory influence of Ang II on ECs was significantly attenuated upon suppression of YAP activity. Furthermore, the function of Ang II in regulating angiogenesis during fibrosis was investigated in liver-specific transgenic mice. The results revealed that Ang II gene deletion could restrain liver fibrosis and EndMT. Meanwhile, Ang II deletion downregulated the profibrotic YAP signaling pathway in ECs. The small molecule AT1R agonist olmesartan targeting Ang II-YAP signaling could also alleviate liver fibrosis. In conclusion, this study identified Ang II as a pivotal regulator of EndMT during the progression of liver fibrosis and evaluated the therapeutic effect of the Ang II-targeted drug olmesartan on liver fibrosis.


Subject(s)
Adaptor Proteins, Signal Transducing , Angiotensin II , Liver Cirrhosis , Neovascularization, Pathologic , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Angiotensin II/pharmacology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , YAP-Signaling Proteins/metabolism , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Neovascularization, Pathologic/metabolism , Humans , Hippo Signaling Pathway , Mice, Inbred C57BL , Transcription Factors/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Male , Mice, Transgenic , Cell Cycle Proteins/metabolism , Imidazoles/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Tetrazoles/pharmacology , Angiogenesis
20.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126118

ABSTRACT

The Hippo pathway transducers yes-associated protein (YAP) and WW-domain containing transcription regulator 1 (WWTR1/TAZ) are key regulators of liver tumorigenesis, promoting tumor formation and progression. Although the first inhibitors are in clinical trials, targeting the relevant upstream regulators of YAP/TAZ activity could prove equally beneficial. To identify regulators of YAP/TAZ activity in hepatocarcinoma (HCC) cells, we carried out a proximity labelling approach (BioID) coupled with mass spectrometry. We verified CRK-like proto-oncogene adaptor protein (CRKL) as a new YAP-exclusive interaction partner. CRKL is highly expressed in HCC patients, and its expression is associated with YAP activity as well as poor survival prognosis. In vitro experiments demonstrated CRKL-dependent cell survival and the loss of YAP binding induced through actin disruption. Moreover, we delineated the activation of the JNK/JUN pathway by CRKL, which promoted YAP transcription. Our data illustrate that CRKL not only promoted YAP activity through its binding but also through the induction of YAP transcription by JNK/JUN activation. This emphasizes the potential use of targeting the JNK/JUN pathway to suppress YAP expression in HCC patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , Liver Neoplasms , Nuclear Proteins , Transcription Factors , YAP-Signaling Proteins , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Proto-Oncogene Mas , Cell Line, Tumor , Protein Binding , MAP Kinase Signaling System , Gene Expression Regulation, Neoplastic , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL