Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Metabolites ; 13(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37887425

ABSTRACT

Protein aggregation is the etiopathogenesis of the three most profound vision-threatening eye diseases: age-related cataract, presbyopia, and age-related macular degeneration. This perspective organizes known information on ATP and protein aggregation with a fundamental unrecognized function of ATP. With recognition that maintenance of protein solubility is related to the high intracellular concentration of ATP in cells, tissues, and organs, we hypothesize that (1) ATP serves a critical molecular function for organismal homeostasis of proteins and (2) the hydrotropic feature of ATP prevents pathological protein aggregation while assisting in the maintenance of protein solubility and cellular, tissue, and organismal function. As such, the metabolite ATP plays an extraordinarily important role in the prevention of protein aggregation in the leading causes of vision loss or blindness worldwide.

2.
Biol Chem ; 404(10): 897-908, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37656203

ABSTRACT

ATP is an important small molecule that appears at outstandingly high concentration within the cellular medium. Apart from its use as a source of energy and a metabolite, there is increasing evidence for important functions as a cosolute for biomolecular processes. Owned to its solubilizing kosmotropic triphosphate and hydrophobic adenine moieties, ATP is a versatile cosolute that can interact with biomolecules in various ways. We here use three models to categorize these interactions and apply them to review recent studies. We focus on the impact of ATP on biomolecular solubility, folding stability and phase transitions. This leads us to possible implications and therapeutic interventions in neurodegenerative diseases.


Subject(s)
Adenosine Triphosphate , Solubility
3.
Chem Zvesti ; : 1-14, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37362789

ABSTRACT

Herein, interactions between cetylpyridinium chloride (CPC) and ceftriaxone sodium (CTS) were investigated applying conductivity technique. Impacts of the nature of additives (e.g. electrolytes or hydrotrope (HDT)), change of temperatures (from 298.15 to 323.15 K), and concentration variation of CTS/additives were assessed on the micellization of CPC + CTS mixture. The conductometric analysis of critical micelle concentration (CMC) with respect to the concentration reveals that the CMC values were increased with the increase in CTS concentration. In terms of using different mediums, CMC did not differ much with the increase in electrolyte salt (NaCl, Na2SO4) concentration, but increased significantly with the rise of HDT (NaBenz) amount. In the presence of electrolyte, CMC showed a gentle increment with temperature, while the HDT showed the opposite trend. Obtained result was further correlated with conventional thermodynamic relationship, where standard Gibb's free energy change (ΔGmo), change of enthalpy (ΔHmo), and change of entropy (ΔSmo) were utilized to investigate. The ΔGmo values were negative for all the mixed systems studied indicating that the micellization process was spontaneous. Finally, the stability of micellization was studied by estimating the intrinsic enthalpy gain (ΔHmo,∗) and compensation temperature (Tc). Here, CPC + CTS mixed system showed more stability in Na2SO4 medium than the NaCl, while in NaBenz exhibited the lowest stability.

4.
J Colloid Interface Sci ; 641: 631-642, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36963256

ABSTRACT

HYPOTHESIS: The role of hormones and polyphenolic acids in communication and regulation of biological processes can be linked to their physical-chemical interaction with target compounds and water. Further, the variety of polyphenolic acids suggests adjustable hydrotropic properties of these natural compounds. EXPERIMENTS: Phase transition temperature (PTT) measurements of binary water/di(propylene glycol) n-propyl ether (DPnP) or propylene glycol n-propyl ether (PnP) systems with sodium dehydroepiandrosterone sulfate (NaDHEAS), indole-3-acetate (NaIAA), indole-3-butyrate (NaIBA) - common hormones -, and sodium polyphenolates should unravel their salting-in/-out properties. Their salting-in/-out behavior was compared to the compounds' surface-active and structuring properties via surface tension, dynamic light scattering (DLS) and Nuclear magnetic resonance (NMR) experiments. FINDINGS: All hormone salts were revealed as salting-in agents. PTT, surface tension and DLS measurements indicated surfactant-like behavior of the hormone NaDHEAS, and hydrotropic behavior of NaIAA and NaIBA. The salting-in/-out properties of sodium polyphenolates - in an (anti-)hydrotrope range - are adjustable with functional groups. The (i) absence of nano-structuring in pure water, (ii) the reduction of the DPnP nano-structuring in water in presence of sodium polyphenolates and (iii) the absence of a slope change of the PTT curves at the critical aggregation concentration showed that the DPnP/polyphenolate interactions are of molecular hydrotropic and not of micellar/aggregative nature.


Subject(s)
Plant Growth Regulators , Salts , Salts/chemistry , Sodium Chloride , Surface-Active Agents/chemistry , Sodium , Hormones , Water , Propylene Glycols
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769037

ABSTRACT

The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.


Subject(s)
Anti-Infective Agents , Ionic Liquids , Mice , Animals , Excipients , Betaine/pharmacology , Ionic Liquids/pharmacology , Carnitine , Ophthalmic Solutions/pharmacology , Bromides , Anti-Infective Agents/pharmacology , Anthraquinones/pharmacology , Esters
6.
J Colloid Interface Sci ; 634: 983-994, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36571860

ABSTRACT

HYPOTHESIS: Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS: Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS: Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.


Subject(s)
Polymers , Sodium Chloride , Polymers/chemistry , Anions/chemistry , Hydrophobic and Hydrophilic Interactions , Hydrocarbons
7.
Carbohydr Polym ; 300: 120245, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372479

ABSTRACT

Selective dissolution of industrial biowaste is of significant importance for the valorization of biomass. Especially, fractionation of polysaccharides with similar structures is more challenging. Herein, a new kind of cationic hydrotrope, tetraethylammonium hydroxide (TEAH), has been developed for rapid, efficient, and selective dissolution of industrial biowastes-xylan type hemicelluloses from viscose fiber mills. When the concentration of TEAH is 15 wt%, the solubility of industrial crystalline xylan reaches to 13.39 wt% at room temperature. Crystalline or amorphous xylan can be regenerated by adding water or ethanol, with 57.98 % and 95.45 % yields, respectively. Additionally, we showcase hemicelluloses were near-completely extracted from holocellulose without degrading cellulose under ambient temperature by simply adjusting the concentration of TEAH, demonstrating the advantage of the hydrotropic feature. This hydrotrope solvent system features selective, rapid, and room temperature dissolution polysaccharides, which will shed new light in technological applications of the industrial spinning or biorefining processes.


Subject(s)
Polysaccharides , Xylans , Solubility , Temperature , Polysaccharides/chemistry
8.
Gels ; 8(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36286115

ABSTRACT

Polyglycerol dendrimers (PGD) exhibit unique properties such as drug delivery, drug solubilization, bioimaging, and diagnostics. In this study, PGD hydrogels were prepared and evaluated as devices for controlled drug release with good solubilization properties. The PGD hydrogels were prepared by crosslinking using ethylene glycol diglycidylether (EGDGE). The concentrations of EGDGE and PGDs were varied. The hydrogels were swellable in ethanol for loading paclitaxel (PTX). The amount of PTX in the hydrogels increased with the swelling ratio, which is proportional to EGDGE/OH ratio, meaning that heterogeneous crosslinking of PGD made high dense region of PGD molecules in the matrix. The hydrogels remained transparent after loading PTX and standing in water for one day, indicating that PTX was dispersed in the hydrogels without any crystallization in water. The results of FTIR imaging of the PTX-loaded PGD hydrogels revealed good dispersion of PTX in the hydrogel matrix. Sixty percent of the loaded PTX was released in a sink condition within 90 min, suggesting that the solubilized PTX would be useful for controlled release without any precipitation. Polyglycerol dendrimer hydrogels are expected to be applicable for rapid release of poorly water-soluble drugs, e.g., for oral administration.

9.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144825

ABSTRACT

One of the key elements influencing the efficiency of cellulosic ethanol production is the effective pretreatment of lignocellulosic biomass. The aim of the study was to evaluate the effect of microwave-assisted pretreatment of wheat stillage in the presence of sodium cumene sulphonate (NaCS) hydrotrope used for the production of second-generation bioethanol. As a result of microwave pretreatment, the composition of the wheat stillage biomass changed significantly when compared with the raw material used, before treatment. Microwave-assisted pretreatment with NaCS effectively reduced the lignin content and hemicellulose, making cellulose the dominant component of biomass, which accounted for 42.91 ± 0.10%. In post pretreatment, changes in biomass composition were also visible on FTIR spectra. The peaks of functional groups and bonds characteristic of lignins (C-O vibration in the syringyl ring, asymmetric bending in CH3, and aromatic skeleton C-C stretching) decreased. The pretreatment of the analyzed lignocellulosic raw material with NaCS resulted in the complete conversion of glucose to ethanol after 48 h of the process, with yield (in relation to the theoretical one) of above 91%. The highest observed concentration of ethanol, 23.57 ± 0.10 g/L, indicated the high effectiveness of the method used for the pretreatment of wheat stillage that did not require additional nutrient supplementation.


Subject(s)
Ethanol , Lignin , Biofuels , Biomass , Cellulose/metabolism , Ethanol/chemistry , Fermentation , Glucose , Hydrolysis , Lignin/chemistry , Microwaves , Sodium , Triticum/metabolism
10.
Metabolites ; 12(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629965

ABSTRACT

Adenosine triphosphate (ATP) may be the most important biological small molecule. Since it was discovered in 1929, ATP has been regarded as life's energy reservoir. However, this compound means more to life. Its legend starts at the dawn of life and lasts to this day. ATP must be the basic component of ancient ribozymes and may facilitate the origin of structured proteins. In the existing organisms, ATP continues to construct ribonucleic acid (RNA) and work as a protein cofactor. ATP also functions as a biological hydrotrope, which may keep macromolecules soluble in the primitive environment and can regulate phase separation in modern cells. These functions are involved in the pathogenesis of aging-related diseases and breast cancer, providing clues to discovering anti-aging agents and precision medicine tactics for breast cancer.

11.
Chemistry ; 28(28): e202200274, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35383407

ABSTRACT

New alkyl ether carboxylates with a glyceryl spacer instead of ethylene glycol units have been synthesised using environmentally friendly methodology. A cascade synthesis of acetalisation and hydrogenolysis was developed to obtain products containing an alkyl chain linked to a glycerol unit bearing a polar carboxylate head. These products were methylated by using trimethyl phosphate to observe the influence of a free or methoxylated alcohol on the physicochemical properties. Finally, saponification gave the carboxylate anionic group of the new hydrotropes. Studying the amphiphilicity, the tolerance to sodium and calcium ions, and the solubilising power of these bio-based ionic/nonionic hydrotropes has shown that they exhibit significantly improved application properties compared to similar petro-based hydrotropes.


Subject(s)
Ether , Ethers , Alcohols , Ethylene Glycol , Ions
12.
Bioresour Bioprocess ; 9(1): 40, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-38647740

ABSTRACT

The biomass pretreatment strategies using organic acids facilitate lignin removal and enhance the enzymatic digestion of cellulose. However, lignin always suffers a severe and irreversible condensation. The newly generated C-C bonds dramatically affect its further upgrading. In this study, we used a recyclable hydrotrope (p-Toluenessulfonic acid, p-TsOH) to dissolve lignin under mild condition and stabilized lignin with a quenching agent (formaldehyde, FA) during extraction, achieving both value-added lignin extraction and efficient enzymatic saccharification of cellulose. Approximately 63.7% of lignin was dissolved by 80% (wt. %) p-TsOH with 1.5% FA addition at 80 °C, 30 min. The obtained lignin was characterized by FTIR spectroscopy, TGA, 2D HSQC NMR spectroscopy, and GPC. The results indicated that the extracted lignin exhibited excellent properties, such as light color, a low molecular weight (Mw, 5371 g/mol), and a narrow polydispersity (Mw/Mn, 1.63). The pretreated substrate was converted to ethanol via a quasi-simultaneous saccharification and fermentation process (Q-SSF). After fermentation of 60 h, the ethanol concentration reached 38.7 ± 3.3 g/L which was equivalent to a theoretical ethanol yield of 82.9 ± 2.2% based on the glucan content, while the residual glucose concentration was only 4.69 ± 1.4 g/L. In short, this pretreatment strategy protected lignin to form new C-C linkages and improved the enzymatic saccharification of glucan for high-titer ethanol production.

13.
Adv Colloid Interface Sci ; 294: 102476, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34229180

ABSTRACT

In his 1916 land-mark paper "Hydrotropic appearances", Carl Neuberg coined the term "hydrotropy", referring to the solubilisation effect of hydrophobic molecules by small, amphiphilic compounds. In this voluminous work he examines 43 different compounds for their hydrotropic effect and touches on many aspects that later became relevant to hydrotrope science (e.g. applications in pharma, green chemistry, pre-ouzo effect, etc.). Given the significance of his work, it is still widely cited today. However, poor availability and a potential language barrier will severely limit the accessibility for international researchers. Therefore, this translation into the English language seeks to provide access to both, his original thoughts as well as his prolific experimental work on this topic.

14.
J Hazard Mater ; 412: 125096, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33517054

ABSTRACT

Renewable lignocellulosic biomass can be effectively transformed to value-added products, enabling fast growth of related downstream processing. However, valorization of the by-produced cellulose-poor fraction, which is also in large volumes, is only occasionally reported regarding existing technologies. Here, a simple, general, and effective strategy for fabricating graphene quantum dots (GQDs) from the Miscanthus (MC) biorefinery waste consisting of sugars and depolymerized lignin, is developed. This process involves the fast and selective removal of most lignin and hemicellulose based on mild acid hydrotrope fractionation, with followed hydrothermal carbonization. The as-fabricated MC-derived GQDs (M-GQDs) exhibit several advantages such as few-layer graphene-like single crystalline structure, sulfur and nitrogen co-doping, bright fluorescence, excitation-dependent photoluminescence, and long fluorescence lifetime (11.95 ns). Furthermore, M-GQDs present prominent fluorescence reduction in the presence of Fe3+ with good linearity (≤0.995) and very low detection limit (≥1.41 nM). Later, it is found that the observed high sensitivity for Fe3+ is based on a dynamic quenching mechanism, which is caused by the Fe3+-induced increase in both the energy dissipation and photogenerated electron consumption. This work is anticipated to open new opportunities for promoting the integral valorization of biomass and sensitive fluorometric detection of Fe3+.


Subject(s)
Graphite , Quantum Dots , Ions , Nitrogen , Spectrometry, Fluorescence
15.
J Colloid Interface Sci ; 581(Pt A): 292-298, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32771739

ABSTRACT

HYPOTHESIS: The self-assembly of ionic surfactants in deep eutectic solvents has recently been demonstrated, opening up new possibilities in terms of the development of formulated products and templating of nanostructured materials. As it occurs in an aqueous environment, the solvophobic effect drives the formation of micelles in these solvents and specific-ion interactions alter the resulting structures. We hypothesized that the presence of hydrotropic salts would greatly affect the micellar structure in deep eutectic solvents, ultimately leading to the formation of worm-like aggregates. EXPERIMENTS: A systematic investigation performed on hydrotrope-surfactant assemblies in neat and hydrated 1:2 choline chloride:glycerol is presented. The effect of choline salicylate on the micellization of hexadecyltrimethylammonium chloride at different hydrotrope-to-surfactant ratios was probed by contrast variation small-angle neutron scattering. FINDINGS: Here the first investigation on salt-induced micellar growth in deep eutectic solvents is presented. The microscopic characterization of the system shows that the micelle-hydrotrope interaction in pure and hydrated deep eutectic solvents results in a significant increase in micelle elongation. The condensation of the hydrotrope on the micelle, which alters the effective monomer packing, leads to the formation of worm-like micelles with tunable morphology and flexibility. The results presented here present new possibilities in terms of self-assembly and co-assembly in neoteric solvents, where micelle morphology can be controlled through surfactant-salt interactions.

16.
Front Bioeng Biotechnol ; 8: 565084, 2020.
Article in English | MEDLINE | ID: mdl-33015018

ABSTRACT

This study describes a class of cellulosic nanomaterials, cellulosic nanowhiskers (CNWs), and demonstrates scaled-up production with acid recovery using less expensive equipment made of common stainless steel rather than glass-lined steel. CNWs produced using concentrated maleic acid (MA) hydrolysis followed by mechanical fibrillation have morphology similar to MA-produced cellulose nanocrystals (CNCs) and sulfuric-acid-produced CNCs (S-CNCs) but differ in crystallinity. Applications of CNWs as a substitute for CNCs for which morphology and surface charge, rather than crystallinity, are the pertinent characteristics are presented. The tested CNW suspensions have a wider viscosity range of 0.001 to 1000 Pa.s over a variety of shear rates of 0.01 to 1000 1/s compared to S-CNCs of 0.001 to 0.1 Pa.s and are better suited for applications such as rheology modification and 3D printing. This study proposes CNWs as a less expensive and sustainable replacement for CNCs in applications that do not require crystalline properties.

17.
Int J Mol Sci ; 21(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164312

ABSTRACT

The Mediator is composed of multiple subunits conserved from yeast to humans and plays a central role in transcription. The tail components are not required for basal transcription but are required for responses to different stresses. While some stresses are familiar, such as heat, desiccation, and starvation, others are exotic, yet yeast can elicit a successful stress response. 4-Methylcyclohexane methanol (MCHM) is a hydrotrope that induces growth arrest in yeast. We found that a naturally occurring variation in the Med15 allele, a component of the Mediator tail, altered the stress response to many chemicals in addition to MCHM. Med15 contains two polyglutamine repeats (polyQ) of variable lengths that change the gene expression of diverse pathways. The Med15 protein existed in multiple isoforms and its stability was dependent on Ydj1, a protein chaperone. The protein level of Med15 with longer polyQ tracts was lower and turned over faster than the allele with shorter polyQ repeats. MCHM sensitivity via variation of Med15 was regulated by Snf1 in a Myc-tag-dependent manner. Tagging Med15 with Myc altered its function in response to stress. Genetic variation in transcriptional regulators magnified genetic differences in response to environmental changes. These polymorphic control genes were master variators.


Subject(s)
Cyclohexanes/pharmacology , Mediator Complex/genetics , Mediator Complex/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Gene Expression Regulation, Fungal/drug effects , HSP40 Heat-Shock Proteins/metabolism , Mediator Complex/chemistry , Mutation , Peptides , Protein Serine-Threonine Kinases/metabolism , Protein Stability , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Stress, Physiological
18.
Bioresour Technol ; 300: 122661, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31918302

ABSTRACT

Effectiveness of hydrotropic delignification using sodium cumene sulfonate for pretreatment of rye, wheat and maize stillage for further use in the production of bioethanol was evaluated. The highest stillage biomass extractives was obtained for a biomass particle size <1.0 mm, when exposed to 131 °C for 1 h at 20% v/v hydrotrope concentration. It has been shown that hydrotropic treatment causes changes in the stillage biomass structure (increase in porosity) and reduces the lignin content in biomass by 7-17%. Delignification with a hydrotrope also increased the concentration of fermentable sugars in the media prepared with stillage biomass, which led to a higher final ethanol concentration (up to ca. 3.5 g/L). Hydrotropic treatment is an effective way of pretreatment of stillage biomass. It provides a high degree of biomass bioconversion and creates the prospect of integrating the 1st and 2nd generation ethanol production process to more fully utilize the raw material.


Subject(s)
Ethanol , Lignin , Biomass , Fermentation , Hydrolysis , Zea mays
19.
Exp Eye Res ; 190: 107862, 2020 01.
Article in English | MEDLINE | ID: mdl-31669043

ABSTRACT

The hypothesis proposed herein is presented to explain the unexpectedly high concentration of ATP and provide evidence to support its hydrotropic function in the crystalline lens determined using 31P NMR. The lens, historically considered to be a metabolically quiescent organ, has the requisite machinery to synthesize ATP, such that the homeostatic level is maintained at about 3 mM. This relatively high concentration of ATP has been found to be consistent among multiple mammalian species including humans. This millimolar quantity is many times greater than the micromolar amounts required for the other known functions of ATP. The recent postulation that ATP at millimolar concentrations functions as a hydrotrope in various cell/tissue homogenates preventing protein aggregation coupled with observations presented herein, provide support for extending the hypothesis that ATP functions as a hydrotrope not only in homogenates but in an intact functioning organ, the crystalline lens. Concentrations of ATP of this magnitude are hypothesized to be required to maintain protein solubility and effectively prevent protein aggregation. This concept is important considering protein aggregation is the etiology for age-related cataractogenesis. ATP is a common ubiquitous intracellular molecule possessing the requisite hydrotropic properties for maintaining intracellular proteins in a fluid, non-aggregated state. It is proposed that the amphiphilic ATP molecule shields the hydrophobic regions on intralenticular fiber cell protein molecules and provides a hydrophilic interfacial surface comprised of the ATP negatively charged triphosphate side chain. Evidence is presented that this side chain is exposed to and has been reported to organize intracellular interstitial water to form an interfacial rheologically dynamic water layer. Such organization of water is substantiated with the effect of deuterium oxide (heavy water) on ATP line widths of the side chain phosphates measured ex vivo by 31P NMR. A novel model is presented to propose how this water layer separates adjacent lens fiber cell proteins, keeping them from aggregating. This hypothesis proposes that ATP can prevent protein aggregation in normal intact lenses, and with declining concentrations can be related to the disease process in age-related cataractogenesis, an affliction that affects every older human being.


Subject(s)
Adenosine Triphosphate/physiology , Lens, Crystalline/metabolism , Animals , Cataract/diagnostic imaging , Cataract/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Lens, Crystalline/diagnostic imaging , Magnetic Resonance Spectroscopy , Phosphorus/metabolism , Protein Aggregates
20.
Biol Trace Elem Res ; 195(1): 260-271, 2020 May.
Article in English | MEDLINE | ID: mdl-31392542

ABSTRACT

While drugs and other industrial chemicals are routinely studied to assess risks, many widely used chemicals have not been thoroughly evaluated. One such chemical, 4-methylcyclohexane methanol (MCHM), is an industrial coal-cleaning chemical that contaminated the drinking water supply in Charleston, WV, USA in 2014. While a wide range of ailments was reported following the spill, little is known about the molecular effects of MCHM exposure. We used the yeast model to explore the impacts of MCHM on cellular function. Exposure to MCHM dramatically altered the yeast transcriptome and the balance of metals in yeast. Underlying genetic variation in the response to MCHM, transcriptomics and, mutant analysis uncovered the role of the metal transporters, Arn2 and Yke4, to MCHM response. Expression of Arn2, which is involved in iron uptake, was lower in MCHM-tolerant yeast and loss of Arn2 further increased MCHM tolerance. Genetic variation within Yke4, an ER zinc transporter, also mediated response to MCHM, and loss of Yke4 decreased MCHM tolerance. The addition of zinc to MCHM-sensitive yeast rescued growth inhibition. In vitro assays demonstrated that MCHM acted as a hydrotrope and prevented protein interactions, while zinc induced the aggregation of proteins. We hypothesized that MCHM altered the structures of extracellular domains of proteins, and the addition of zinc stabilized the structure to maintain metal homeostasis in yeast exposed to MCHM.


Subject(s)
Cyclohexanes/pharmacology , Saccharomyces cerevisiae/drug effects , Zinc/metabolism , Cyclohexanes/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL