Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 11: 1188, 2020.
Article in English | MEDLINE | ID: mdl-32849736

ABSTRACT

Citrus leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae) is an atypical virus that does not spread systemically in its plant hosts. Upon its inoculation by Brevipalpus mites, only localized lesions occur, and the infection remains limited to cells around mite feeding sites. Here, we aimed to gain insights into the putative causes of viral unfitness in plants by expanding the limited knowledge of the molecular mechanisms underlying plant/kitavirid interactions. Firstly, we quantified the CiLV-C viral RNAs during the infection in Arabidopsis thaliana plants using RT-qPCR and systematized it by defining three stages of distinguishing subgenomic and genomic RNA accumulation: i) 0-24 h after infestation, ii) 2-4 days after infestation (dai), and iii) 6-10 dai. Accordingly, the global plant response to CiLV-C infection was assessed by RNA-Seq at each period. Results indicated a progressive reprogramming of the plant transcriptome in parallel to the increasing viral loads. Gene ontology enrichment analysis revealed the induction of cell growth-related processes at the early stages of the infection and the triggering of the SA-mediated pathway, ROS burst and hypersensitive response (HR) at the presymptomatic stage. Conversely, infected plants downregulated JA/ET-mediated pathways and processes involved in the primary metabolism including photosynthesis. Marker genes of unfolded protein response were also induced, suggesting a contribution of the endoplasmic reticulum stress to the cell death caused by the viral infection. Finally, we transiently expressed CiLV-C proteins in Nicotiana benthamiana plants to undertake their roles in the elicited plant responses. Expression of the CiLV-C P61 protein consistently triggered ROS burst, upregulated SA- and HR-related genes, increased SA levels, reduced JA levels, and caused cell death. Mimicry of responses typically observed during CiLV-C-plant interaction indicates P61 as a putative viral effector causing the HR-like symptoms associated with the infection. Our data strengthen the hypothesis that symptoms of CiLV-C infection might be the outcome of a hypersensitive-like response during an incompatible interaction. Consequently, the locally restricted infection of CiLV-C, commonly observed across infections by kitavirids, supports the thesis that these viruses, likely arising from an ancestral arthropod-infecting virus, are unable to fully circumvent plant defenses.

2.
Front Microbiol ; 11: 1231, 2020.
Article in English | MEDLINE | ID: mdl-32655520

ABSTRACT

Citrus leprosis virus C (CiLV-C) belongs to the genus Cilevirus, family Kitaviridae, and is considered the most devastating virus infecting citrus in Brazil, being the main viral pathogen responsible for citrus leprosis (CL), a severe disease that affects citrus orchards in Latin America. Here, proteins encoded by CiLV-C genomic RNA 1 and 2 were screened for potential RNA silencing suppressor (RSS) activity by five methods. Using the GFP-based reporter agroinfiltration assay, we have not found potential local suppressor activity for the five CiLV-C encoded proteins. However, when RSS activity was evaluated using the alfalfa mosaic virus (AMV) system, we found that the p29, p15, and p61 CiLV-C proteins triggered necrosis response and increased the AMV RNA 3 accumulation, suggesting a suppressive functionality. From the analysis of small interfering RNAs (siRNAs) accumulation, we observed that the ectopic expression of the p29, p15, and p61 reduced significantly the accumulation of GFP derived siRNAs. The use of the RSS defective turnip crinkle virus (TCV) system revealed that only the trans-expression of the p15 protein restored the cell-to-cell viral movement. Finally, the potato virus X (PVX) system revealed that the expression of p29, p15, and p61 increased the PVX RNA accumulation; in addition, the p29 and p15 enhanced the pathogenicity of PVX resulting in the death of tobacco plants. Furthermore, PVX-p61 infection resulted in a hypersensitive response (HR), suggesting that p61 could also activate a plant defense response mechanism. This is the first report describing the RSS activity for CiLV-C proteins and, moreover, for a member of the family Kitaviridae.

3.
Saudi J Biol Sci ; 27(8): 1913-1922, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32714014

ABSTRACT

Certain soil bacteria produce beneficial effects on the growth and health of plants; hence, their use is steadily increasing. Five strains of Bacillus with plant growth-promoting potential were selected in this study, which produced indole-3-acetic acid levels below 50 µg.mL-1. On the other hand, while only strains M8 and M15 dissolved phosphorus, the latter was the only strain that did not produce siderophores. Only strains M8 and M16 significantly inhibited the in vitro growth of Botrytis cinerea and Fusarium solani phytopathogens, whose inhibition ranges fluctuated between 60% and 63% for strains M8 and M16 against B. cinerea and between 40% and 53% for strains M8 and M16 against F. solani. Based on these results, the need to implement resistance induction against gray mold on pepper plants was determined using strains M8 and M16. In this case, strain M16 inhibited the propagation of the necrotic spot by approximately 70%, whereas strain M8 significantly reduced the superoxide dismutase activity in systemic leaves, which substantially increased in plants inoculated with strain M8 and infected with the pathogen. Accordingly, the use of native rhizobacteria may entail biotechnological progress for the integrated management of crops in agriculture industry.

4.
Mol Plant Pathol ; 20(10): 1394-1407, 2019 10.
Article in English | MEDLINE | ID: mdl-31274237

ABSTRACT

Transcription activator-like effectors (TALEs) are important effectors of Xanthomonas spp. that manipulate the transcriptome of the host plant, conferring susceptibility or resistance to bacterial infection. Xanthomonas citri ssp. citri variant AT (X. citri AT ) triggers a host-specific hypersensitive response (HR) that suppresses citrus canker development. However, the bacterial effector that elicits this process is unknown. In this study, we show that a 7.5-repeat TALE is responsible for triggering the HR. PthA4AT was identified within the pthA repertoire of X. citri AT followed by assay of the effects on different hosts. The mode of action of PthA4AT was characterized using protein-binding microarrays and testing the effects of deletion of the nuclear localization signals and activation domain on plant responses. PthA4AT is able to bind DNA and activate transcription in an effector binding element-dependent manner. Moreover, HR requires PthA4AT nuclear localization, suggesting the activation of executor resistance (R) genes in host and non-host plants. This is the first case where a TALE of unusually short length performs a biological function by means of its repeat domain, indicating that the action of these effectors to reprogramme the host transcriptome following nuclear localization is not limited to 'classical' TALEs.


Subject(s)
Bacterial Proteins/metabolism , Plant Diseases/microbiology , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Bacterial Proteins/genetics , Citrus/microbiology , Nicotiana/microbiology
5.
Front Plant Sci ; 8: 205, 2017.
Article in English | MEDLINE | ID: mdl-28261255

ABSTRACT

The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

6.
Mol Plant Pathol ; 18(9): 1267-1281, 2017 12.
Article in English | MEDLINE | ID: mdl-27647752

ABSTRACT

Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri AT , that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri AT was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri AT triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri AT and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease.


Subject(s)
Citrus/microbiology , Plant Diseases/microbiology , Xanthomonas/pathogenicity , Autophagy/physiology , Biofilms , Gene Expression Regulation, Plant , Plant Immunity/physiology , Salicylic Acid/metabolism
7.
Curr Protein Pept Sci ; 18(4): 294-310, 2017.
Article in English | MEDLINE | ID: mdl-27455974

ABSTRACT

Plants exhibit sensitive mechanisms to respond to environmental stresses, presenting some specific and non-specific reactions when attacked by pathogens, including organisms from different classes and complexity, as viroids, viruses, bacteria, fungi and nematodes. A crucial step to define the fate of the plant facing an invading pathogen is the activation of a compatible Resistance (R) gene, the focus of the present review. Different aspects regarding R-genes and their products are discussed, including pathogen recognition mechanisms, signaling and effects on induced and constitutive defense processes, splicing and post transcriptional mechanisms involved. There are still countless challenges to the complete understanding of the mechanisms involving R-genes in plants, in particular those related to the interactions with other genes of the pathogen and of the host itself, their regulation, acting mechanisms at transcriptional and post-transcriptional levels, as well as the influence of other types of stress over their regulation. A magnification of knowledge is expected when considering the novel information from the omics and systems biology.


Subject(s)
Arabidopsis Proteins/immunology , Disease Resistance/genetics , Gene Expression Regulation, Plant/immunology , Genome, Plant , Plant Diseases/immunology , Plants/genetics , Arabidopsis Proteins/genetics , Chromosome Mapping , Ethylenes/biosynthesis , Ethylenes/immunology , Gene Dosage , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Plant Diseases/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/immunology , Plants/microbiology , Plants/parasitology , Plants/virology , Protein Isoforms/genetics , Protein Isoforms/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Signal Transduction
8.
Fungal Biol ; 120(10): 1184-93, 2016 10.
Article in English | MEDLINE | ID: mdl-27647236

ABSTRACT

Apple bitter rot (ABR) and Glomerella leaf spot (GLS) can be caused by Colletotrichum fructicola. Although both diseases can occur simultaneously in orchards, some isolates show clear organ specialization. Thus, this work was aimed to compare microscopically the development of preinfective structures of ABR- and GLS isolates and their impact on the enzymatic oxidant defense system during the leaf infection process. On leaves, conidial germlings of GLS-isolate formed appressoria mostly sessile. In contrast, those of ABR-isolate were pedicellate and formed multiple melanized appressoria probably as a sign of unsuccessful infection attempts. Neither ABR- nor GLS isolate triggered hypersensitive response in apple leaves. In overall, the activity of scavenging enzymes was higher and long-lasting in leaves inoculated by GLS- than by ABR isolate and control. Guaiacol peroxidase, catalase, and glutathione reductase had activity peaks within 24 h after inoculation (HAI). Ascorbate peroxidase activity was higher only in GLS-infected leaves at 6 HAI, while superoxide dismutase remained unaltered. A lower level of hydrogen peroxide (H2O2) was determined in GLS-infected plants at 48 HAI, but the electrolyte leakage markedly increased. Disease symptoms in leaves were only caused by GLS-isolate. Results suggest that the virulent isolate coordinately downregulates the oxidative plant defense responses enabling its successful establishment in apple leaves.


Subject(s)
Colletotrichum/isolation & purification , Malus/microbiology , Plant Diseases/microbiology , Colletotrichum/genetics , Colletotrichum/growth & development , Colletotrichum/metabolism , Hydrogen Peroxide , Malus/enzymology , Malus/genetics , Malus/metabolism , Oxidative Stress , Peroxidase/genetics , Peroxidase/metabolism , Plant Diseases/genetics , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Spores, Fungal/classification , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/isolation & purification , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
9.
Front Plant Sci ; 6: 572, 2015.
Article in English | MEDLINE | ID: mdl-26284090

ABSTRACT

Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ(1) pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro.

10.
J Exp Bot ; 65(5): 1271-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24465010

ABSTRACT

Many stresses are associated with increased accumulation of reactive oxygen species (ROS) and polyamines (PAs). PAs act as ROS scavengers, but export of putrescine and/or PAs to the apoplast and their catabolization by amine oxidases gives rise to H2O2 and other ROS, including hydroxyl radicals ((•)OH). PA catabolization-based signalling in apoplast is implemented in plant development and programmed cell death and in plant responses to a variety of biotic and abiotic stresses. Central to ROS signalling is the induction of Ca(2+) influx across the plasma membrane. Different ion conductances may be activated, depending on ROS, plant species, and tissue. Both H2O2 and (•)OH can activate hyperpolarization-activated Ca(2+)-permeable channels. (•)OH is also able to activate both outward K(+) current and weakly voltage-dependent conductance (ROSIC), with a variable cation-to-anion selectivity and sensitive to a variety of cation and anion channel blockers. Unexpectedly, PAs potentiated (•)OH-induced K(+) efflux in vivo, as well as ROSIC in isolated protoplasts. This synergistic effect is restricted to the mature root zone and is more pronounced in salt-sensitive cultivars compared with salt-tolerant ones. ROS and PAs suppress the activity of some constitutively expressed K(+) and non-selective cation channels. In addition, both (•)OH and PAs activate plasma membrane Ca(2+)-ATPase and affect H(+) pumping. Overall, (•)OH and PAs may provoke a substantial remodelling of cation and anion conductance at the plasma membrane and affect Ca(2+) signalling.


Subject(s)
Cell Membrane/metabolism , Plant Physiological Phenomena , Polyamines/metabolism , Reactive Oxygen Species/metabolism , Ion Transport , Membrane Potentials
11.
Biol. Res ; 42(2): 205-215, 2009. ilus, tab
Article in English | LILACS | ID: lil-524891

ABSTRACT

The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase ...


Subject(s)
Pectobacterium carotovorum/physiology , Plant Diseases/microbiology , Ralstonia solanacearum/physiology , Solanum tuberosum/microbiology , Xanthomonas axonopodis/physiology , Host-Parasite Interactions , Immunity, Innate/physiology , Pectobacterium carotovorum/pathogenicity , Plant Diseases/immunology , Ralstonia solanacearum/pathogenicity , Solanum tuberosum/enzymology , Solanum tuberosum/immunology , Xanthomonas axonopodis/pathogenicity
12.
Genet. mol. biol ; Genet. mol. biol;30(3,suppl): 931-942, 2007. ilus, graf
Article in English | LILACS | ID: lil-467271

ABSTRACT

Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R) and pathogen avirulence (Avr) genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR). When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

SELECTION OF CITATIONS
SEARCH DETAIL