Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.936
Filter
1.
Inflamm Res ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254873

ABSTRACT

OBJECTIVE: Blood lipid levels play a critical role in the progression of atherosclerosis. However, even with adequate lipid reduction, significant residual cardiovascular risk remains. Therefore, it is necessary to seek novel therapeutic strategies for atherosclerosis that can not only lower lipid levels but also inhibit inflammation simultaneously. METHODS: The fusion protein FD03-IL-1Ra was designed by linking the Angiopoietin-like 3 (ANGPTL3) nanobody and human interleukin-1 receptor antagonist (IL-1Ra) sequences to a mutated human immunoglobulin gamma 1 (IgG1) Fc. This construct was transfected into HEK293 cells for expression. The purity and thermal stability of the fusion protein were assessed using SDS-PAGE, SEC-HPLC, and differential scanning calorimetry. Binding affinities of the fusion protein to ANGPTL3 and IL-1 receptor were measured using Biacore T200. The biological activity of the fusion protein was validated through in vitro experiments. The therapeutic efficacy of the fusion protein was evaluated in an ApoE-/- mouse model of atherosclerosis, including serum lipid level determination, histological analysis of aorta and aortic sinus sections, and detection of inflammatory and oxidative stress markers. ImageJ software was utilized for quantitative image analysis. Statistical analysis was performed using one-way ANOVA followed by Bonferroni post hoc test. RESULTS: The FD03-IL-1Ra fusion protein was successfully expressed, with no polymer formation detected, and it demonstrated good thermal and conformational stability. High affinity for both murine and human ANGPTL3 was exhibited by FD03-IL-1Ra, and it was able to antagonize hANGPTL3's inhibition of LPL activity. FD03-IL-1Ra also showed high affinity for both murine and human IL-1R, inhibiting IL-6 expression in A549 cells induced by IL-1ß stimulation, as well as suppressing IL-1ß-induced activity inhibition in A375.S2 cells. Our study revealed that the fusion protein effectively lowered serum lipid levels and alleviated inflammatory responses in mice. Furthermore, the fusion protein enhanced plaque stability by increasing collagen content within atherosclerotic plaques. CONCLUSIONS: These findings highlighted the potential of bifunctional interleukin-1 receptor antagonist and ANGPTL3 antibody fusion proteins for ameliorating the progression of atherosclerosis, presenting a promising novel therapeutic approach targeting both inflammation and lipid levels.

2.
Mol Biol Rep ; 51(1): 978, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269555

ABSTRACT

BACKGROUND: Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an apoptosis inducer that exhibits an ideal therapeutic safety profile with less adverse effects than conventional chemotherapy. However, the occurrence of TRAIL resistance has been reported in various cancers including colorectal cancer (CRC). Substantial efforts have been channelled towards managing TRAIL resistance including identifying molecular targets. Interleukins (ILs) have been recently shown to play critical roles in modulating TRAIL sensitivity in cancer cells. METHODS AND RESULTS: This study investigated the roles of two ILs, IL-8 and IL⍺, in TRAIL resistance in CRC. TRAIL-resistant HT-29 and TRAIL-sensitive HCT 116 cells, were treated with human recombinant IL-8 and IL-1⍺. The results indicated that treatment with IL-8 (2.5 ng/mL) significantly protected TRAIL-sensitive HCT 116 cells from TRAIL-induced cell death (p < 0.05). However, IL-1⍺ did not play a role in modulating CRC cells' responses to TRAIL. Data from RT-qPCR and Western blotting revealed the molecular regulations of IL-8 on TRAIL decoy receptor genes (OPG) and autophagy-related genes (BECN1 and LC3B) expression. The activation of the phosphoinositide 3-kinase (PI3K) pathway was shown to counteract TRAIL-induced cell death. By inhibiting its activation with wortmannin, the protective role of IL-8 against TRAIL treatment was reversed, suggesting the involvement of the PI3K pathway. CONCLUSION: Collectively, findings from this study identified the role of IL-8 and PI3K in modulating CRC cells' sensitivity to TRAIL. Further validation of these two potential molecular targets is warranted to overcome TRAIL resistance in CRC.


Subject(s)
Apoptosis , Colorectal Neoplasms , Interleukin-8 , Phosphatidylinositol 3-Kinases , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Interleukin-8/metabolism , Interleukin-8/genetics , HCT116 Cells , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , HT29 Cells , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Cell Death/drug effects
3.
Asia Pac Allergy ; 14(3): 97-102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220569

ABSTRACT

Background: The importance of IL-37 and downstream signal in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) demanding further investigation. Objective: We sought to address the potential importance of the IL-37-IL-1R8 axis in regulating inflammatory response in patients with CRSwNP. Methods: Nasal polyp (NP) tissues and control sinonasal tissues were obtained from adult CRSwNP, chronic rhinosinusitis without nasal polyps patients and healthy control subjects. The mRNA and protein levels of IL-37 and IL-1R8 in nasal tissues were examined by using quantitative PCR, immunohistochemical staining, and immunoblotting. In addition, the regulation of IL-1R8 expression was evaluated in human nasal epithelial cells (HNECs) in the presence of different stimuli. Results: The mRNA and protein levels of IL-37 and IL-1R8 were significantly elevated in nasal polyps compared with that in control tissues. IL-37 and IL-1R8 were mainly distributed in the epithelial layer and lamina propria of tissues. IL-1R8 mRNA level in nasal polys was negatively associated with eosinophil and neutrophil infiltration, as well as endoscopic score and computed tomography score. Moreover, the mRNA expression of IL-1R8 in HNECs was significantly increased by toll-like receptor agonists, but significantly inhibited by proinflammatory cytokines, which can be rescued by using steroid (DEX). Conclusion: Our findings showed that enhanced IL-37-IL-1R8 axis in NP tissues was negatively associated with inflammatory and clinical severity of CRSwNP patients, which could be considered as a future therapeutic target in CRSwNP patients.

4.
Inflamm Res ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39231819

ABSTRACT

Severe acute pancreatitis (SAP) is an inflammatory disease with varying severity, ranging from mild local inflammation to severe systemic disease, with a high incidence rate and mortality. Current drug treatments are not ideal. Therefore, safer and more effective therapeutic drugs are urgently needed. 7α,14ß-dihydroxy-ent-kaur-17-dimethylamino-3,15-dione DGA, a diterpenoid compound derivatized from glaucocalyxin A, exhibits anti-inflammatory activity. In this study, we demonstrated the therapeutic potential of DGA against SAP and elucidated the underlying mechanisms. Treatment with DGA markedly (1) inhibited death of RAW264.7 and J774a.1 cells induced by Nigericin and lipopolysaccharide, (2) alleviated edema, acinar cell vacuolation, necrosis, and inflammatory cell infiltration of pancreatic tissue in mice, and (3) inhibited the activity of serum lipase and the secretion of inflammatory factor IL-1ß. DGA significantly reduced the protein expression of IL-1ß and NLRP3 and inhibited the phosphorylation of NF-κB. However, DGA exhibited no inhibitory effect on the expression of caspase-1, gasdermin D (GSDMD), NF-κB, TNF-α, or apoptosis-associated speck-like protein (ASC) and on the cleavage of caspase-1 or GSDMD. Molecular docking simulation confirmed that DGA can bind to TLR4 and IL-1 receptor. In conclusion, DGA may effectively alleviate the symptoms of SAP in mice and macrophages by inhibiting the binding of TLR4 and IL-1 receptor to their ligands; therefore, DGA is a promising drug candidate for the treatment of patients with SAP.

5.
Int J Mol Sci ; 25(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39273697

ABSTRACT

Age-related macular degeneration (AMD) is a major global health problem as it is the leading cause of irreversible loss of central vision in the aging population. Anti-vascular endothelial growth factor (anti-VEGF) therapies are effective but do not respond optimally in all patients. This study investigates the genetic factors associated with susceptibility to AMD and response to treatment, focusing on key polymorphisms in the ARMS2 (rs10490924), IL1B1 (rs1143623), TNFRSF1B (rs1061622), TNFRSF1A (rs4149576), VEGFA (rs3024997), ARMS2, IL1B1, TNFRSF1B, TNFRSF1A, and VEGFA serum levels in AMD development and treatment efficacy. This study examined the associations of specific genetic polymorphisms and serum protein levels with exudative and early AMD and the response to anti-VEGF treatment. The AA genotype of VEGFA (rs3024997) was significantly associated with a 20-fold reduction in the odds of exudative AMD compared to the GG + GA genotypes. Conversely, the TT genotype of ARMS2 (rs10490924) was linked to a 4.2-fold increase in the odds of exudative AMD compared to GG + GT genotypes. In females, each T allele of ARMS2 increased the odds by 2.3-fold, while in males, the TT genotype was associated with a 5-fold increase. Lower serum IL1B levels were observed in the exudative AMD group compared to the controls. Early AMD patients had higher serum TNFRSF1B levels than controls, particularly those with the GG genotype of TNFRSF1B rs1061622. Exudative AMD patients with the CC genotype of TNFRSF1A rs4149576 had lower serum TNFRSF1A levels compared to the controls. Visual acuity (VA) analysis showed that non-responders had better baseline VA than responders but experienced decreased VA after treatment, whereas responders showed improvement. Central retinal thickness (CRT) reduced significantly in responders after treatment and was lower in responders compared to non-responders after treatment. The T allele of TNFRSF1B rs1061622 was associated with a better response to anti-VEGF treatment under both dominant and additive genetic models. These findings highlight significant genetic and biochemical markers associated with AMD and treatment response. This study found that the VEGFA rs3024997 AA genotype reduces the odds of exudative AMD, while the ARMS2 rs10490924 TT genotype increases it. Lower serum IL1B levels and variations in TNFRSF1B and TNFRSF1A levels were linked to AMD. The TNFRSF1B rs1061622 T allele was associated with better anti-VEGF treatment response. These markers could potentially guide risk assessment and personalized treatment for AMD.


Subject(s)
Interleukin-1beta , Macular Degeneration , Polymorphism, Single Nucleotide , Receptors, Tumor Necrosis Factor, Type I , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/blood , Male , Female , Macular Degeneration/genetics , Macular Degeneration/drug therapy , Macular Degeneration/blood , Macular Degeneration/pathology , Aged , Interleukin-1beta/genetics , Interleukin-1beta/blood , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/blood , Aged, 80 and over , Genetic Predisposition to Disease , Middle Aged , Genotype , Alleles , Proteins , Receptors, Tumor Necrosis Factor, Type II
6.
Proc Natl Acad Sci U S A ; 121(33): e2405644121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121163

ABSTRACT

Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Signal Transduction , Aged , Female , Humans , Male , Middle Aged , Interferons/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Signal Transduction/drug effects , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/antagonists & inhibitors
7.
Adv Exp Med Biol ; 1448: 385-397, 2024.
Article in English | MEDLINE | ID: mdl-39117828

ABSTRACT

Cytokine Storm is a complex and heterogeneous state of life-threatening systemic inflammation and immunopathology. Autoinflammation is a mechanistic category of immune dysregulation wherein immunopathology originates due to poor regulation of innate immunity. The growing family of monogenic Systemic Autoinflammatory Diseases (SAIDs) has been a wellspring for pathogenic insights and proof-of-principle targeted therapeutic interventions. There is surprisingly little overlap between SAID and Cytokine Storm Syndromes, and there is a great deal to be inferred from those SAID that do, and do not, consistently lead to Cytokine Storm. This chapter will summarize how illustrations of the autoinflammatory paradigm have advanced the understanding of human inflammation, including the role of autoinflammation in familial HLH. Next, it will draw from monogenic SAID, both those with strong associations with cytokine storm and those without, to illustrate how the cytokine IL-18 links innate immune dysregulation and cytokine storm.


Subject(s)
Cytokine Release Syndrome , Immunity, Innate , Humans , Cytokine Release Syndrome/immunology , Interleukin-18/immunology , Interleukin-18/genetics , Inflammation/immunology , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/genetics , Animals , Cytokines/immunology , Cytokines/metabolism
8.
Adv Exp Med Biol ; 1448: 553-563, 2024.
Article in English | MEDLINE | ID: mdl-39117838

ABSTRACT

Interleukin-1 is a prototypic proinflammatory cytokine that is elevated in cytokine storm syndromes (CSSs), such as secondary hemophagocytic lymphohistiocytosis (sHLH) and macrophage activation syndrome (MAS). IL-1 has many pleotropic and redundant roles in both innate and adaptive immune responses. Blockade of IL-1 with recombinant human interleukin-1 receptor antagonist has shown efficacy in treating CSS. Recently, an IL-1 family member, IL-18, has been demonstrated to be contributory to CSS in autoinflammatory conditions, such as in inflammasomopathies (e.g., NLRC4 mutations). Anecdotally, recombinant IL-18 binding protein can be of benefit in treating IL-18-driven CSS. Lastly, another IL-1 family member, IL-33, has been postulated to contribute to CSS in an animal model of disease. Targeting of IL-1 and related cytokines holds promise in treating a variety of CSS.


Subject(s)
Cytokine Release Syndrome , Interleukin-1 , Humans , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/drug therapy , Interleukin-1/antagonists & inhibitors , Interleukin-1/immunology , Interleukin-1/genetics , Interleukin-1/metabolism , Animals , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin 1 Receptor Antagonist Protein/genetics , Calcium-Binding Proteins/genetics , Interleukin-18/genetics , Interleukin-18/immunology , Macrophage Activation Syndrome/immunology , Macrophage Activation Syndrome/drug therapy , Macrophage Activation Syndrome/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/drug therapy , CARD Signaling Adaptor Proteins
9.
Mol Med ; 30(1): 116, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118044

ABSTRACT

BACKGROUND: CD74 is ectopically expressed in many tumors and can regulate tumor immunity. However, there are many gaps in the study of the prognostic value of CD74 expression and immune infiltration in hepatocellular carcinoma (HCC). METHODS: An online tumor database was searched to obtain data on gene/protein expression. Immune infiltration analysis was performed using the Tumor Immune Estimation Resource and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer databases. Single-cell data were obtained from the Tissue-specific Gene Expression and Regulation, Single-cell Transcriptomes of Tumor Immune Microenvironment and Tumor Immune Single-cell Hub 2 databases. RESULTS: CD74 was highly expressed in HCC patients. HCC patients with high CD74 expression who consumed alcohol or were negative for hepatitis virus had a better prognosis than patients with low CD74 expression. CD74 was mainly enriched in immune response regulation pathways. Both copy number variations in CD74 and CD74 expression patterns affected the infiltration levels of immune cells. Interestingly, CD74 regulated the differentiation of myeloid cells. CD74 in macrophages and dendritic cells (DCs) forms complex networks with malignant cells and hepatic progenitor cell (HPC)-like cells, respectively. High CD74 expression in HPC-like cells and malignant cells significantly decreased the fraction of C-type lectin domain family 9 A (CLEC9A)-cDC1+ DCs and IL-1B+ macrophages, respectively. Their crosstalk subsequently shaped the tumor microenvironment of HCC, possibly through the CD74-MIF axis. Importantly, patients with high CD74 expression presented higher immune scores and achieved good outcomes after receiving immunotherapy. CONCLUSION: High CD74 expression is associated with the abundance of a variety of immune cell types, mediating interactions among tumor and immune cells and shaping the malignant behavior of HCC. In summary, CD74 may be a hallmark for determining the prognosis and immune cell infiltration levels of HCC patients.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Carcinoma, Hepatocellular , Histocompatibility Antigens Class II , Immunotherapy , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/etiology , Tumor Microenvironment/immunology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/etiology , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Immunotherapy/methods , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor , Computational Biology/methods
10.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125655

ABSTRACT

Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Interleukin-1 , Pancreatic Neoplasms , Sphingomyelins , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1/metabolism , Sphingomyelins/metabolism , Cytokines/metabolism , Cell Line, Tumor , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/metabolism , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects
11.
J Hematol Oncol ; 17(1): 67, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143574

ABSTRACT

BACKGROUND: The interleukin-1 receptor accessory protein (IL1RAP) is highly expressed on acute myeloid leukemia (AML) bulk blasts and leukemic stem cells (LSCs), but not on normal hematopoietic stem cells (HSCs), providing an opportunity to target and eliminate the disease, while sparing normal hematopoiesis. Herein, we report the activity of BIF002, a novel anti-IL1RAP/CD3 T cell engager (TCE) in AML. METHODS: Antibodies to IL1RAP were isolated from CD138+ B cells collected from the immunized mice by optoelectric positioning and single cell sequencing. Individual mouse monoclonal antibodies (mAbs) were produced and characterized, from which we generated BIF002, an anti-human IL1RAP/CD3 TCE using Fab arm exchange. Mutations in human IgG1 Fc were introduced to reduce FcγR binding. The antileukemic activity of BIF002 was characterized in vitro and in vivo using multiple cell lines and patient derived AML samples. RESULTS: IL1RAP was found to be highly expressed on most human AML cell lines and primary blasts, including CD34+ LSC-enriched subpopulation from patients with both de novo and relapsed/refractory (R/R) leukemia, but not on normal HSCs. In co-culture of T cells from healthy donors and IL1RAPhigh AML cell lines and primary blasts, BIF002 induced dose- and effector-to-target (E:T) ratio-dependent T cell activation and leukemic cell lysis at subnanomolar concentrations. BIF002 administered intravenously along with human T cells led to depletion of leukemic cells, and significantly prolonged survival of IL1RAPhigh MOLM13 or AML patient-derived xenografts with no off-target side effects, compared to controls. Of note, BiF002 effectively redirects T cells to eliminate LSCs, as evidenced by the absence of disease initiation in secondary recipients of bone marrow (BM) from BIF002+T cells-treated donors (median survival not reached; all survived > 200 days) compared with recipients of BM from vehicle- (median survival: 26 days; p = 0.0004) or isotype control antibody+T cells-treated donors (26 days; p = 0.0002). CONCLUSIONS: The novel anti-IL1RAP/CD3 TCE, BIF002, eradicates LSCs and significantly prolongs survival of AML xenografts, representing a promising, novel treatment for AML.


Subject(s)
Interleukin-1 Receptor Accessory Protein , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , T-Lymphocytes , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/drug therapy , Humans , Animals , Mice , Interleukin-1 Receptor Accessory Protein/immunology , T-Lymphocytes/immunology , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Mice, Inbred NOD
12.
Microorganisms ; 12(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39203559

ABSTRACT

Intestinal permeability and bacterial translocation are increased in obesity and metabolic syndrome (MS). ILC3 cells contribute to the integrity of intestinal epithelium by producing IL-22 via IL-1ß and IL-23. This study investigates the role of IL-1R1 in inducing ILC3 cells and conferring protection during obesity and MS. For this purpose, C57BL/6 wild-type (WT) and IL-1R1-deficient mice were fed a standard diet (SD) or high-fat diet (HFD) for 16 weeks. Weight and blood glucose levels were monitored, and adipose tissue and blood samples were collected to evaluate obesity and metabolic parameters. The small intestine was collected to assess immunological and junction protein parameters through flow cytometry and RT-PCR, respectively. The intestinal permeability was analyzed using the FITC-dextran assay. The composition of the gut microbiota was also analyzed by qPCR. We found that IL-1R1 deficiency exacerbates MS in HFD-fed mice, increasing body fat and promoting glucose intolerance. A worsening of MS in IL-1R1-deficient mice was associated with a reduction in the ILC3 population in the small intestine. In addition, we found decreased IL-22 expression, increased intestinal permeability and bacterial translocation to the visceral adipose tissue of these mice compared to WT mice. Thus, the IL-1R1 receptor plays a critical role in controlling intestinal homeostasis and obesity-induced MS, possibly through the differentiation or activation of IL-22-secreting ILC3s.

13.
Vaccines (Basel) ; 12(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39203963

ABSTRACT

Herpes simplex virus-1 (HSV-1) is common and can cause significant disease in humans. Unfortunately, efforts to develop effective vaccines against HSV-1 have so far failed. A detailed understanding of how the virus infects its host and how the host mounts potent immune responses against the virus may inform new vaccine approaches. Here, using a zosteriform mouse model, we examined how the HSV-1 gene UL56 affects the ability of the virus to cause morbidity and generate protective immunity. A UL56 deletion mutant, ΔUL56, was derived from the wild-type HSV-1 strain SC16, alongside a revertant strain in which UL56 was reintroduced in ΔUL56. In vitro, the three virus strains replicated in a similar manner; however, in vivo, only the wild type and the revertant strains caused shingles-like skin lesions and death. Mice previously infected with ΔUL56 became resistant to a lethal challenge with the wild-type SC16. The protective immunity induced by ΔUL56 was independent of IL-1, IL-33, and IL-36 signaling through IL-1RAP. Both skin and intramuscular ΔUL56 inoculation generated protective immunity against a lethal SC16 challenge. After 6 months, female mice remained resistant to infection, while male mice exhibited signs of declining protection. Our data demonstrate that UL56 is important for the ability of HSV-1 to spread within the infected host and that a ∆UL56 strain elicits an effective immune response against HSV-1 despite this loss of virulence. These findings may guide further HSV-1 vaccine development.

14.
Cureus ; 16(7): e65721, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39211643

ABSTRACT

BACKGROUND AND OBJECTIVES: In ancient China, bee venom was widely used to treat various diseases. Although using bee venom is not currently a mainstream medical method, some have applied it to treat certain conditions, including idiopathic facial paralysis (IFP). Recently, melittin (Mel), the main active component of bee venom, has been shown strong anti-inflammatory and analgesic effects. However, how bee venom improves neurological dysfunction in facial paralysis remains unknown. This study aimed to investigate the anti-neurotraumatic effect of Mel on Schwann cells (SCs), the main cells of the neuron sheath, injured by oxidative stress. METHODS: A model of hypoxic SCs was established, and CCK-8 assay, siRNA transfection, enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, western blot, immunofluorescence, and cell ultrastructure analyses were conducted to investigate the mitigation of hypoxia-induced damage to SCs in vitro, revealing the effects of Mel on oxidative stress injury in SCs. RESULTS: The overexpression of HIF-1α in CoCl2-induced SCs (p < 0.05) indicated the establishment of an SCs hypoxia model. The proliferation and regeneration process of the hypoxic SCs enhanced in the Mel-treated group compared to the CoCl2 group has been proven through the CCK-8 experiment (p < 0.0001) and S-100 mRNA expression detection (p < 0.0001). The increased level of reactive oxygen species (ROS) (p < 0.001) and decreased superoxide dismutase (SOD) levels (p < 0.05) in the CoCl2-induced SCs indicated that Mel can alleviate the oxidative stress damage to SCs induced by CoCl2. Mel alleviated oxidative stress and inflammation in hypoxic SCs by reducing pro-inflammatory cytokines IL-1ß (p < 0.0001) and TNF-α (p < 0.0001). In addition, Mel augmented cellular vitality and regulated indicators related to oxygen metabolism, cell repair, neurometabolism, and vascular endothelial formation after hypoxia, such as C-JUN (p < 0.05), glial cell line-derived neurotrophic factor (GDNF; p < 0.001), vascular endothelial growth factor (VEGF; p < 0.05), hypoxia-inducible factor 1-alpha (HIF-1α; p < 0.05), interleukin-1 receptor type 1 (IL-1R1; p < 0.05), enolase1 (ENO1; p < 0.05), aldose reductase (AR; p < 0.01), SOD (p < 0.05), nerve growth factor (NGF; p < 0.05), and inducible nitric oxide synthase (iNOS; p < 0.05). In terms of its mechanism, Mel inhibited the expression of proteins associated with the NF-κB pathway such as IKK (p < 0.01), p65 (p < 0.05), p60 (p < 0.001), IRAK1 (p < 0.05), and increased IKB-α (p < 0.0001). Moreover, knocking out of IL-1R1 in the si-IL-1R1 group enhanced the therapeutic effect of Mel compared to the Mel-treated group (all of which p < 0.05). CONCLUSION: This research provided evidence of the substantial involvement of IL-1R1 in oxidative stress damage caused by hypoxia in SCs and proved that Mel alleviated oxidative stress injury in SCs by targeting IL-1R1 to downregulate the NF-κB-mediated inflammatory response. Mel could potentially serve as an innovative therapeutic approach for the treatment of IFP.

15.
Int Immunopharmacol ; 141: 113000, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39191124

ABSTRACT

Liver inflammatory diseases are marked by serious complications. Notably, nicardipine (NCD) has demonstrated anti-inflammatory properties, but its benefits in liver inflammation have not been studied yet. However, the therapeutic efficacy of NCD is limited by its short half-life and low bioavailability. Therefore, we aimed to evaluate the potential of NCD-loaded chitosan nanoparticles (ChNPs) to improve its pharmacokinetic profile and hepatic accumulation. Four formulations of NCD-ChNPs were synthesized and characterized. The optimal formulation (NP2) exhibited a mean particle diameter of 172.6 ± 1.94 nm, a surface charge of +25.66 ± 0.93 mV, and an encapsulation efficiency of 88.86 ± 1.17 %. NP2 showed good physical stability as a lyophilized powder over three months. It displayed pH-sensitive release characteristics, releasing 77.15 ± 5.09 % of NCD at pH 6 (mimicking the inflammatory microenvironment) and 52.15 ± 3.65 % at pH 7.4, indicating targeted release in inflamed liver tissues. Pharmacokinetic and biodistribution studies revealed that NCD-ChNPs significantly prolonged NCD circulation time and enhanced its concentration in liver tissues compared to plain NCD. Additionally, the study investigated the protective effects of NCD-ChNPs in thioacetamide-induced liver injury in rats by modulating the NFκB/NLRP3/IL-1ß signaling axis. NCD-ChNPs effectively inhibited NFκB activation, reduced NLRP3 inflammasome activation, and subsequent release of IL-1ß, which correlated with improved hepatic function and reduced inflammation and oxidative stress. These findings highlight the potential of NCD-ChNPs as a promising nanomedicine strategy for the treatment of liver inflammatory diseases, warranting further investigation into their clinical applications, particularly in hypertensive patients with liver inflammatory conditions.

16.
Article in English | MEDLINE | ID: mdl-39104321

ABSTRACT

In this study, we uncovered the novel mechanism of IL-1α-mediated DRA (SLC26A3) downregulation in the context of Brachyspira spp. induced malabsorptive diarrhea. Experimentally infected pigs with Brachyspira spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either Brachyspira lysate or IL-1α. Both p38 and MK-2 showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. Additionally, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signalling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from Brachyspira lysate, suggesting a minor contribution from another pathway. Together this demonstrates that Brachyspira activates p38 MAPK signalling driving IL-1α expression which activates IL-1R1 causing DRA downregulation. While also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion we elucidated a major pathway involved in DRA downregulation and its role in Brachyspira induced diarrhea. Additionally these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.

17.
Expert Opin Emerg Drugs ; : 1-13, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39087391

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is a chronic, degenerative, and debilitating disease associated with significant long-term morbidity and disability. The pathogenesis of OA is not completely understood but involves an interplay between environmental risk factors, joint mechanics, abnormal pain pathways and upregulation of inflammatory signaling pathways. Current therapeutic options for patients are limited to conservative management, minimal pharmacological options or surgical management, with significant caveats to all approaches. AREAS COVERED: In this review, we have set out to investigate current phase II/III clinical trials by undertaking a PubMed search. Examined clinical trials have explored a myriad of potential therapeutics from conventional disease-modifying anti-rheumatic drugs and biologics usually used in the treatment of inflammatory arthritides, to more novel approaches targeting inflammatory pathways implicated in OA, cartilage degeneration or pain pathways. EXPERT OPINION: Unfortunately, most completed phase II/III clinical trials have shown little impact on patient pain scores, with the exception of the traditional DMARD methotrexate and Sprifermin. Methotrexate has been shown to be beneficial when used in the correct patient cohort (MRI proven synovitis). Sprifermin has the longest follow-up data of 5 years and has been shown to reduce loss of MRI-measured cartilage thickness and pain scores.

18.
Int Immunopharmacol ; 141: 113017, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197293

ABSTRACT

Recurrent pericarditis (RP) is defined by the European Society of Cardiology (ESC) as an instance of acute pericarditis (AP) that occurs at least 4-6 weeks after the resolution of a previous episode of the same ailment. To mitigate the risk of RP, it is advised to administer accurate and prolonged pharmacological treatment for both the initial AP and subsequent RP. ESC guidelines recommend commencing treatment for any single episode of AP, including those that contribute to RP, with non-steroidal anti-inflammatory drugs (NSAIDs) in conjunction with colchicine for several months, often followed by gradual tapering. If there is an inadequate response, corticosteroids (CS) may be introduced cautiously. However, in a minority of cases, even when NSAIDs, colchicine, and CS are administered together at the highest recommended dosages, they may prove ineffective. In such instances, treatment with immunosuppressive drugs or biologics is advised. Among biologics, interleukin (IL)-1 inhibitors have been extensively studied, although certain gaps remain. This narrative review delves into the rationale for employing IL-1 inhibitors and presents findings from existing studies regarding their efficacy, tolerability, and safety. Analysis of the literature indicates that there is currently insufficient data to ascertain the true therapeutic role of IL-1 inhibitors in managing and preventing RP. However, theoretically, drugs targeting both IL-1α and IL-1ß may offer superior efficacy compared to those solely targeting IL-1ß due to the significant involvement of both cytokines in inflammation. Further research is warranted to determine the comparative effectiveness of IL-1α and IL-1ß inhibitors.

19.
Sci Rep ; 14(1): 19889, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39191800

ABSTRACT

When IL-1 receptor antagonist (IL-1rn) is knocked out, mice have shown strain background dependent and major QTL regulated susceptibility to spontaneously inflammatory arthritis disease (SAD). The impact on bone properties resulting from the interactions of IL-1rn, genomic background strains, and the QTL locus, is unknown. Bone properties in the four specifically bred mouse strains with mutation of IL-1rn and variations in genomic components were investigated with high-resolution MicroCT and genomic analytical tools. Two congenic mouse strains were also measured to evaluate the influence on bone properties by a QTL in the region in chromosome 1. Our results reveal that several bone phenotypes, including bone mineral density (BMD), bone volume, tibial length, and cortical thickness of the tibia are different between wild type and IL-1rn knockout mice in both Balb/c and DBA/1 backgrounds, but IL-1rn knockout affects BMD differently between the two mouse strains. The absence of IL-1rn decreases BMD in Balb/c mice but increases BMD in DBA/1-/- mice compared to their respective wild type counterparts. A QTL transferred from the Balb/c genetic background which affects arthritis in congenic strains appears to also regulate BMD. While several genes, including Ctsg and Prg2, may affect BMD, Ifi202b is the most favored candidate gene for regulating BMD as well as SAD. In conclusion, the previously mentioned bone phenotypes are each influenced in different ways by the loss of IL-1ra when considered in mice from varying genomic backgrounds.


Subject(s)
Bone Density , Interleukin 1 Receptor Antagonist Protein , Mice, Knockout , Quantitative Trait Loci , Animals , Mice , Bone Density/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/deficiency , Mice, Inbred BALB C , Bone and Bones/metabolism , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Mice, Inbred DBA , Male , Phenotype , X-Ray Microtomography , Hereditary Autoinflammatory Diseases
20.
Front Immunol ; 15: 1422249, 2024.
Article in English | MEDLINE | ID: mdl-39188718

ABSTRACT

Decades of evidence positioned IL-1ß as a master regulatory cytokine in acute and chronic inflammatory diseases. Approved biologics aimed at inhibiting IL-1 signaling have shown efficacy but variable safety. More recently, targeting NLRP3 activation, an upstream mediator of IL-1ß, has garnered the most attention. Aberrant NLRP3 activation has been demonstrated to participate in the progression of several pathological conditions from neurogenerative diseases to cardio-metabolic syndromes and cancer. Pharmacological and genetic strategies aimed to limit NLRP3 function have proven effective in many preclinical models of diseases. These evidences have lead to a significant effort in the generation and clinical testing of small orally active molecules that can target NLRP3. In this report, we discuss different properties of these molecules with translational potential and describe the technologies currently available to screen NLRP3 targeting molecules highlighting advantages and limitations of each method.


Subject(s)
Drug Development , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Drug Development/methods , Drug Evaluation, Preclinical , Interleukin-1beta/metabolism , Interleukin-1beta/antagonists & inhibitors , Inflammasomes/metabolism , Signal Transduction/drug effects , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL