Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters











Publication year range
1.
Acta Pharm Sin B ; 14(9): 3964-3982, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39309505

ABSTRACT

The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gßγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.

2.
Poult Sci ; 103(10): 104072, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39068698

ABSTRACT

The continuous expansion of intestinal stem cells (ISCs) is crucial for maintaining the renewal of the intestinal epithelium, particularly in inflammatory conditions. It remains largely unknown how the internal microbiota repair damage to the internal mucosal barrier. Hence, investigating potential anti-inflammatory probiotics from the intestinal symbolic microbes of broilers and analyzing their mechanism of action to support the intestinal mucosal barrier function can offer novel regulatory tools to alleviate broiler enteritis. In this research, we utilized in vivo broilers plus ex vivo organoids model to thoroughly examine the effectiveness of Lactobacillus reuteri (LR) in protecting the integrity of the intestinal mucosa during lipopolysaccharide-induced (LPS-induced) enteritis in broilers. The findings indicated that LR feeding maintained intestinal morphological and structural integrity, enhanced proliferation of intestinal epithelial cells, and inhibited cell apoptosis and inflammatory response against the deleterious effects triggered by LPS. Simultaneously, LR enhanced ISCs activity and stimulated intestinal epithelial regeneration to protect the intestinal barrier during LPS-induced injury conditions. The coculture system of LR and ileum organoids revealed that LR increased the growth of organoids and attenuated LPS-stimulated damage to organoids. Furthermore, the LPS-induced decrease in ISC activity was rescued by reactivation of Wnt/ß-catenin signaling by LR ex vivo and in vivo. This research revealed that LR promoted the expansion of ISCs and intestinal epithelial cell renewal by regulating the Wnt/ß-catenin signaling pathway, thereby maintaining the integrity of the intestinal mucosal barrier. This finding provided theoretical support for lactobacillus as a probiotic additive in livestock feed to improve intestinal inflammation and treat intestinal diseases.


Subject(s)
Chickens , Intestinal Mucosa , Limosilactobacillus reuteri , Lipopolysaccharides , Probiotics , Stem Cells , Wnt Signaling Pathway , Animals , Limosilactobacillus reuteri/physiology , Probiotics/pharmacology , Probiotics/administration & dosage , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Wnt Signaling Pathway/drug effects , Poultry Diseases/microbiology , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Enteritis/veterinary , Enteritis/chemically induced , Enteritis/prevention & control , Enteritis/microbiology , Diet/veterinary , Male , Animal Feed/analysis
3.
Int Immunopharmacol ; 138: 112614, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38972212

ABSTRACT

Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.


Subject(s)
Intestines , Stem Cells , Toll-Like Receptor 2 , YAP-Signaling Proteins , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestines/cytology , Mice, Inbred C57BL , Organoids/metabolism , Regeneration , Signal Transduction , Stem Cells/metabolism , Stem Cells/drug effects , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Up-Regulation
4.
Microbiol Spectr ; : e0094924, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980029

ABSTRACT

All sulfur transfer pathways generally have in common an l-cysteine desulfurase as the initial sulfur-mobilizing enzyme, which serves as a sulfur donor for the biosynthesis of numerous sulfur-containing biomolecules in the cell. In Escherichia coli, the housekeeping l-cysteine desulfurase IscS functions as a hub for sulfur transfer through interactions with several partner proteins, which bind at different sites on IscS. So far, the interaction sites of IscU, Fdx, CyaY, and IscX involved in iron sulfur (Fe-S) cluster assembly, TusA, required for molybdenum cofactor biosynthesis and mnm5s2U34 transfer RNA (tRNA) modifications, and ThiI, involved in both the biosynthesis of thiamine and s4U8 tRNA modifications, have been mapped. Previous studies have suggested that IscS partner proteins bind only one at a time, with the exception of Fe-S cluster assembly, which involves the formation of a ternary complex involving IscS, IscU, and one of CyaY, Fdx, or IscX. Here, we show that the affinity of TusA for IscS is similar to but lower than that of IscU and that these proteins compete for binding to IscS. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules are readily formed and that binding of both TusA and IscU to IscS affects its l-cysteine desulfurase activity. A model is proposed in which the delivery of sulfur to different sulfur-requiring pathways is controlled by sulfur acceptor protein levels, IscS-binding affinities, and acceptor protein-modulated IscS desulfurase activity.IMPORTANCEIron-sulfur clusters are evolutionarily ancient prosthetic groups. The housekeeping l-cysteine desulfurase IscS functions as a central core for sulfur transfer through interactions with several partner proteins, which bind at different sites on each IscS monomer with different affinities and partially overlapping binding sites. We show that heterocomplexes involving the IscS dimer and single IscU and TusA molecules at each site of the dimer are formed, thereby influencing the activity of IscS.

5.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119794, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033933

ABSTRACT

Sulfur-containing biomolecules such as [FeS] clusters, thiamin, biotin, molybdenum cofactor, and sulfur-containing tRNA nucleosides are essential for various biochemical reactions. The amino acid l-cysteine serves as the major sulfur source for the biosynthetic pathways of these sulfur-containing cofactors in prokaryotic and eukaryotic systems. The first reaction in the sulfur mobilization involves a class of pyridoxal-5'-phosphate (PLP) dependent enzymes catalyzing a Cys:sulfur acceptor sulfurtransferase reaction. The first half of the catalytic reaction involves a PLP-dependent CS bond cleavage, resulting in a persulfide enzyme intermediate. The second half of the reaction involves the subsequent transfer of the thiol group to a specific acceptor molecule, which is responsible for the physiological role of the enzyme. Structural and biochemical analysis of these Cys sulfurtransferase enzymes shows that specific protein-protein interactions with sulfur acceptors modulate their catalytic reactivity and restrict their biochemical functions.


Subject(s)
Cysteine , Pyridoxal Phosphate , Sulfur , Sulfurtransferases , Sulfur/metabolism , Sulfur/chemistry , Cysteine/metabolism , Cysteine/chemistry , Sulfurtransferases/metabolism , Sulfurtransferases/chemistry , Pyridoxal Phosphate/metabolism , Humans , Molybdenum Cofactors , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/chemistry
6.
Exp Cell Res ; 439(1): 114092, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38754617

ABSTRACT

Asymmetric stem cell divisions play instrumental roles in the maintenance, growth and differentiation of organs. Failure of asymmetric stem cell divisions may result in an array of developmental disorders, including cancer. It is well established that the gene, inscuteable, acts as the upstream component of asymmetric cell divisions. In Drosophila larval midgut, a founder adult midgut precursor (AMP) experiences an asymmetric division to instruct its first daughter to become a peripheral cell that serves as a niche where the AMP and its future daughters can remain undifferentiated. The present study demonstrates that inscuteable expressing stem cells require Rab11, a conserved small Ras-like GTPase, for proper proliferation and differentiation. As insc-GAL4 mediated Rab11RNAi in Drosophila larval and adult midguts show the disruption of the niche microenvironment of adult midgut precursors as well as elevated DPP signalling at the larval stage, which is associated with aberrant over-proliferation and early differentiation of larval AMPs and adult intestinal stem cells. The observed connections between Rab11, larval AMP proliferation, niche establishment, and DPP signalling highlight the potential for Rab11 to serve as a key regulatory factor in maintaining tissue homeostasis and balanced cellular growth.


Subject(s)
Cell Differentiation , Drosophila Proteins , Larva , Signal Transduction , rab GTP-Binding Proteins , Animals , Cell Differentiation/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Larva/growth & development , Larva/metabolism , Larva/genetics , Cell Proliferation , Stem Cells/metabolism , Stem Cells/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Stem Cell Niche
7.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38788722

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Subject(s)
Colitis , Mice, Knockout , Receptors, Adrenergic, alpha-2 , Stem Cells , Tyramine , Animals , Tyramine/metabolism , Tyramine/pharmacology , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Mice , Receptors, Adrenergic, alpha-2/metabolism , Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Tyrosine Decarboxylase/metabolism , Enterococcus faecalis/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Yohimbine/pharmacology , Disease Models, Animal , Enterococcus/metabolism , Intestines/microbiology , Intestines/pathology , Cell Proliferation , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate
8.
Redox Biol ; 72: 103160, 2024 06.
Article in English | MEDLINE | ID: mdl-38631120

ABSTRACT

Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.


Subject(s)
Cell Differentiation , Ferroptosis , Goblet Cells , Iron Overload , Oxidative Stress , Receptors, Notch , Signal Transduction , Stem Cells , Animals , Ferroptosis/drug effects , Mice , Goblet Cells/metabolism , Iron Overload/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation/drug effects , Receptors, Notch/metabolism , Oxidative Stress/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Male
9.
J Anim Sci Biotechnol ; 15(1): 54, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38582865

ABSTRACT

BACKGROUND: Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated. RESULTS: A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 300 mg/kg gossypol and 108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model. CONCLUSIONS: The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.

10.
Int Immunopharmacol ; 119: 110247, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37159966

ABSTRACT

Ulcerative colitis (UC) is a chronic and immune-mediated inflammatory disorder characterized by abdominal pain, diarrhoea, and haematochezia. The goal of clinical therapy for UC is mucosal healing, accomplished by regenerating and repairing the intestinal epithelium. Paeoniflorin (PF) is a natural ingredient extracted from Paeonia lactiflora that has significant anti-inflammatory and immunoregulatory efficacy. In this study, we investigated how PF could regulate the renewal and differentiation of intestinal stem cells (ISCs) to improve the regeneration and repair of the intestinal epithelium in UC. Our experimental results showed that PF significantly alleviated colitis induced by dextran sulfate sodium (DSS) and ameliorated intestinal mucosal injury by regulating the renewal and differentiation of ISCs. The mechanism by which PF regulates ISCs was confirmed to be through PI3K-AKT-mTOR signalling. In vitro, we found that PF not only improved the growth of TNF-α-induced colon organoids but also increased the expression of genes and proteins related to the differentiation and regeneration of ISCs. Furthermore, PF promoted the repair ability of lipopolysaccharide (LPS)-induced IEC-6 cells. The mechanism by which PF regulates ISCs was further confirmed and was consistent with the in vivo results. Overall, these findings demonstrate that PF accelerates epithelial regeneration and repair by promoting the renewal and differentiation of ISCs, suggesting that PF treatment may be beneficial to mucosal healing in UC patients.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Colitis/chemically induced , Intestinal Mucosa/metabolism , Regeneration , Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Dextran Sulfate , Disease Models, Animal
11.
Nutrients ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771378

ABSTRACT

Disruption of the intestinal barrier is both the cause and result of sepsis. The proliferation and differentiation of intestinal stem cells (ISCs) promote the regenerative nature of intestinal epithelial cells, repairing the injured intestinal mucosal barrier; however, it is uncertain whether the recovery effects mediated by the ISCs are related to the gut microbiota. This research found that the survival rate of septic mice was improved with a Lactobacillus rhamnosus GG (LGG) treatment. Furthermore, an increased proliferation and decreased apoptosis in colon epithelial cells were observed in the LGG-treated septic mice. In vitro, we found that a LGG supernatant was effective in maintaining the colonoid morphology and proliferation under the damage of TNF-α. Both in the mice colon and the colonoid, the LGG-induced barrier repair process was accompanied by an increased expression of Lgr5+ and lysozyme+ cells. This may be attributed to the upregulation of the IL-17, retinol metabolism, NF-kappa B and the MAPK signaling pathways, among which, Tnfaip3 and Nfkbia could be used as two potential biomarkers for LGG in intestinal inflammation therapy. In conclusion, our finding suggests that LGG protects a sepsis-injured intestinal barrier by promoting ISCs regeneration, highlighting the protective mechanism of oral probiotic consumption in sepsis.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Sepsis , Animals , Mice , Colon/metabolism , Sepsis/therapy , Sepsis/metabolism , Stem Cells , Regeneration
12.
Crit Rev Food Sci Nutr ; 63(32): 11263-11274, 2023.
Article in English | MEDLINE | ID: mdl-35694795

ABSTRACT

Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/ß-catenin, Wnt/GSK-3ß pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.


Subject(s)
Intestinal Mucosa , Stem Cells , Glycogen Synthase Kinase 3 beta/metabolism , Cell Proliferation , Intestinal Mucosa/metabolism , Stem Cells/metabolism , Cell Differentiation , Diet , Homeostasis , Intestines
13.
Cell Mol Gastroenterol Hepatol ; 15(4): 821-839, 2023.
Article in English | MEDLINE | ID: mdl-36503150

ABSTRACT

BACKGROUND & AIMS: Although trimethylation of histone H3 lysine 27 (H3K27me3) by polycomb repressive complex 2 is required for intestinal function, the role of the antagonistic process-H3K27me3 demethylation-in the intestine remains unknown. The aim of this study was to determine the contribution of H3K27me3 demethylases to intestinal homeostasis. METHODS: An inducible mouse model was used to simultaneously ablate the 2 known H3K27me3 demethylases, lysine (K)-specific demethylase 6A (Kdm6a) and lysine (K)-specific demethylase 6B (Kdm6b), from the intestinal epithelium. Mice were analyzed at acute and prolonged time points after Kdm6a/b ablation. Cellular proliferation and differentiation were measured using immunohistochemistry, while RNA sequencing and chromatin immunoprecipitation followed by sequencing for H3K27me3 were used to identify gene expression and chromatin changes after Kdm6a/b loss. Intestinal epithelial renewal was evaluated using a radiation-induced injury model, while Paneth cell homeostasis was measured via immunohistochemistry, immunoblot, and transmission electron microscopy. RESULTS: We did not detect any effect of Kdm6a/b ablation on intestinal cell proliferation or differentiation toward the secretory cell lineages. Acute and prolonged Kdm6a/b loss perturbed expression of gene signatures belonging to multiple cell lineages (adjusted P value < .05), and a set of 72 genes was identified as being down-regulated with an associated increase in H3K27me3 levels after Kdm6a/b ablation (false discovery rate, <0.05). After prolonged Kdm6a/b loss, dysregulation of the Paneth cell gene signature was associated with perturbed matrix metallopeptidase 7 localization (P < .0001) and expression. CONCLUSIONS: Although KDM6A/B does not regulate intestinal cell differentiation, both enzymes are required to support the full transcriptomic and epigenomic landscape of the intestinal epithelium and the expression of key Paneth cell genes.


Subject(s)
Epigenomics , Histones , Animals , Mice , Histones/metabolism , Lysine/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Intestinal Mucosa/metabolism
14.
Cells ; 13(1)2023 12 25.
Article in English | MEDLINE | ID: mdl-38201250

ABSTRACT

Tissue radiosensitivity plays a critical role in the overall outcome of radiation therapy. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data have suggested a difference in male and female radiotherapy outcomes. Radiotherapy for gastrointestinal malignancy is still a challenge due to intestinal sensitivity to radiation toxicity. In this manuscript, we demonstrated sex-specific differences in intestinal epithelial radiosensitivity. In a mouse model of abdominal irradiation, we observed a significant increase in oxidative stress and injury in males compared to females. Lgr5+ve intestinal stem cells from male mice showed higher sensitivity to radiation-induced toxicity. However, sex-specific differences in intestinal radiosensitivity were not dependent on sex hormones, as we demonstrated similar sex-specific radiosensitivity differences in pre-pubescent mice. In an ex vivo study, we found that patient-derived intestinal organoid (PID) from males showed higher sensitivity to radiation compared to females as evident from loss of budding crypts, organoid size, and membrane integrity. Transcriptomic analysis of human Lgr5+ intestinal stem cells suggested radiation-induced upregulation of mitochondrial oxidative metabolism in males compared to females, a possible mechanism for radiosensitivity differences.


Subject(s)
Cell Respiration , Radiation Injuries , Humans , Animals , Female , Male , Mice , Cell Division , Disease Models, Animal , Radiation Tolerance , Receptors, G-Protein-Coupled , Stem Cells
15.
Appl Environ Microbiol ; 88(16): e0072022, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35913151

ABSTRACT

Many animal traits are influenced by their associated microorganisms ("microbiota"). To expand our understanding of the relationship between microbial genotype and host phenotype, we report an analysis of the influence of the microbiota on the dietary preference of the fruit fly Drosophila melanogaster. First, we confirmed through experiments on flies reared bacteria-free ("axenic") or in monoassociation with two different strains of bacteria that the microbiota significantly influences fruit fly dietary preference across a range of ratios of dietary yeast:dietary glucose. Then, focusing on microbiota-dependent changes in fly dietary preference for yeast (DPY), we performed a metagenome-wide association (MGWA) study to define microbial species specificity for this trait and to predict bacterial genes that influence it. In a subsequent mutant analysis, we confirmed that disrupting a subset of the MGWA-predicted genes influences fly DPY, including for genes involved in thiamine biosynthesis and glucose transport. Follow-up tests revealed that the bacterial influence on fly DPY did not depend on bacterial modification of the glucose or protein content of the fly diet, suggesting that the bacteria mediate their effects independent of the fly diet or through more specific dietary changes than broad ratios of protein and glucose. Together, these findings provide additional insight into bacterial determinants of host nutrition and behavior by revealing specific genetic disruptions that influence D. melanogaster DPY. IMPORTANCE Associated microorganisms ("microbiota") impact the physiology and behavior of their hosts, and defining the mechanisms underlying these interactions is a major gap in the field of host-microbe interactions. This study expands our understanding of how the microbiota can influence dietary preference for yeast (DPY) of a model host, Drosophila melanogaster. First, we show that fly preferences for a range of different dietary yeast:dietary glucose ratios vary significantly with the identity of the microbes that colonize the fruit flies. We then performed a metagenome-wide association study to identify candidate bacterial genes that contributed to some of these bacterial influences. We confirmed that disrupting some of the predicted genes, including genes involved in glucose transport and thiamine biosynthesis, resulted in changes to fly DPY and show that the influence of two of these genes is not through changes in dietary ratios of protein to glucose. Together, these efforts expand our understanding of the bacterial genetic influences on a feeding behavior of a model animal host.


Subject(s)
Drosophila melanogaster , Microbiota , Animals , Bacteria/genetics , Diet , Drosophila , Drosophila melanogaster/microbiology , Glucose/metabolism , Microbiota/genetics , Thiamine/metabolism
16.
mBio ; 13(3): e0107122, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35652590

ABSTRACT

Pseudomonas aeruginosa encodes eight members of the Rid protein superfamily. PA5339, a member of the RidA subfamily, is required for full growth and motility of P. aeruginosa. Our understanding of RidA integration into the metabolic network of P. aeruginosa is at an early stage, with analyses largely guided by the well-established RidA paradigm in Salmonella enterica. A P. aeruginosa strain lacking RidA has a growth and motility defect in a minimal glucose medium, both of which are exacerbated by exogenous serine. All described ridA mutant phenotypes are rescued by supplementation with isoleucine, indicating the primary generator of the reactive metabolite 2-aminoacrylate (2AA) in ridA mutants is a threonine/serine dehydratase. However, the critical (i.e., phenotype determining) targets of 2AA leading to growth and motility defects in P. aeruginosa remained undefined. This study was initiated to probe the effects of 2AA stress on the metabolic network of P. aeruginosa by defining the target(s) of 2AA that contribute to physiological defects of a ridA mutant. Suppressor mutations that restored growth to a P. aeruginosa ridA mutant were isolated, including an allele of iscS (encoding cysteine desulfurase). Damage to IscS was identified as a significant cause of growth defects of P. aeruginosa during enamine stress. A suppressing allele encoded an IscS variant that was less sensitive to damage by 2AA, resulting in a novel mechanism of phenotypic suppression of a ridA mutant. IMPORTANCE 2-aminoacrylate (2AA) is a reactive metabolite formed as an intermediate in various enzymatic reactions. In the absence of RidA, this metabolite can persist in vivo where it attacks and inactivates specific PLP-dependent enzymes, causing metabolic defects and organism-specific phenotypes. This work identifies the cysteine desulfurase IscS as the critical target of 2AA in Pseudomonas aeruginosa. A single substitution in IscS decreased sensitivity to 2AA and suppressed growth phenotypes of a ridA mutant. Here, we provide the first report of suppression of a ridA mutant phenotype by altering the sensitivity of a target enzyme to 2AA.


Subject(s)
Pseudomonas aeruginosa , Scrapie , Acrylates/metabolism , Acrylates/pharmacology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Sulfur Lyases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Sheep
17.
Mol Nutr Food Res ; 66(11): e2100551, 2022 06.
Article in English | MEDLINE | ID: mdl-35253371

ABSTRACT

SCOPE: Milk-derived small extracellular vesicles (M-sEVs) are critical bioactive components in milk. They are considered to be regulators in milk that may have promising applications. Understanding their biological effects would be important in nutrition. Intestinal organoids and mice are used to explore the effects of M-sEVs on intestinal regeneration. METHODS AND RESULTS: M-sEVs could be absorbed by intestinal epithelia and upregulate expression of the microRNAs (miRNAs) expressed in milk: miR-148a, miR-22, miR-30, and miR-29a. Interestingly, M-sEVs promote proliferation of intestinal epithelia and repairs the epithelial damage that is caused by tumor necrosis factor-α in intestinal organoids. M-sEVs ameliorate intestinal mucosa damage in mice caused by treatment with dextran sulfate sodium, as well as increasing expression of the intestinal stem cells (ISC) markers leucine-rich repeat containing G-protein-coupled receptor 5 (Lgr5), olfactomedin 4 (Olfm4), and Achaete-Scute Family BHLH Transcription Factor 2 (Ascl2) and stimulating intestinal epithelial proliferation to repair epithelial damage. Furthermore, miR-29 is more abundant in M-sEVs-treated mice, and miR-29 could upregulate expression of ISC marker genes and accelerates intestinal regeneration to recover damaged intestinal epithelia. CONCLUSIONS: We reveal that M-sEVs and miR-29 can accelerate intestinal stem cell-mediated epithelial regeneration and repair epithelial damage.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Intestinal Mucosa/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Milk , Regeneration , Stem Cells
18.
Mol Plant Pathol ; 23(6): 855-869, 2022 06.
Article in English | MEDLINE | ID: mdl-35246928

ABSTRACT

The enterobacterial pathogen Erwinia amylovora uses multiple virulence-associated traits to cause fire blight, a devastating disease of apple and pear trees. Many virulence-associated phenotypes have been studied that are critical for virulence and pathogenicity. Despite the in vitro testing that has revealed how these systems are transcriptionally regulated, information on when and where in infected tissues these genes are being expressed is lacking. Here, we used a high-throughput sequencing approach to characterize the transcriptome of E. amylovora during disease progression on apple flowers under field infection conditions. We report that type III secretion system genes and flagellar genes are strongly co-expressed. Likewise, genes involved in biosynthesis of the exopolysaccharide amylovoran and sorbitol utilization had similar expression patterns. We further identified a group of 16 genes whose expression is increased and maintained at high levels throughout disease progression across time and tissues. We chose five of these genes for mutational analysis and observed that deletion mutants lacking these genes all display reduced symptom development on apple shoots. Furthermore, these induced genes were over-represented for genes involved in sulphur metabolism and cycling, suggesting the possibility of an important role for maintenance of oxidative homeostasis during apple flower infection.


Subject(s)
Erwinia amylovora , Malus , Disease Progression , Flowers/genetics , Flowers/microbiology , Malus/microbiology , Plant Diseases/microbiology , Transcriptome/genetics , Virulence Factors/metabolism
19.
J Radiat Res ; 63(2): 149-157, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35021216

ABSTRACT

Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, ß-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.


Subject(s)
Intestinal Mucosa , Stem Cells , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Proliferation , Humans , Intestinal Mucosa/cytology , Intestines/cytology , Muscle Proteins/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Stem Cells/drug effects , Stem Cells/radiation effects
20.
Curr Biol ; 32(2): 386-397.e6, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34875230

ABSTRACT

The role of processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4, and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1, a gene necessary for P-body assembly. Loss of Patr-1-dependent P-bodies leads to a loss of stem cells that is associated with inappropriate expression of EC-fate gene nubbin. Transcriptomic analysis of progenitor cells identifies a cadre of such weakly transcribed pro-differentiation transcripts that are elevated after P-body loss. Altogether, this study identifies a P-body-dependent repression activity that coordinates with known transcriptional repression programs to maintain a population of in vivo stem cells in a state primed for differentiation.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Cell Differentiation/genetics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Intestines , Mammals , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL