ABSTRACT
INTRODUCTION: Unvaccinated individuals in endemic areas with proven enzootic transmission of Yellow fever virus are at risk of infection due to a dramatic shift in the epidemiology of the disease over recent years. For this reason, epidemiological surveillance and laboratory confirmation of cases have become mandatory. OBJECTIVE: To develop and test a control RNA for YFV detection through real-time RT-PCR. METHODS: A 437-bp insert containing the T7 promoter and the target sequences for two different in-house protocols was designed in the context of the pUC57 vector and obtained through gene synthesis. After T7-driven in vitro transcription, standard curves were developed for Log10 serial dilutions of the YFV control RNA with 8 replicates. RESULTS: A dynamic range of quantification of 10 orders of magnitude was observed with a limit of detection of 6.3 GCE/µL (95% CI, 2.6 to 139.4 GCE/µL). CONCLUSION: The plasmid construct is available for YFV molecular test validation on clinical, entomological, and epizootic samples.
Subject(s)
Yellow Fever , Yellow fever virus , Humans , Yellow fever virus/genetics , Yellow Fever/diagnosis , Yellow Fever/epidemiology , Reverse Transcription , Reverse Transcriptase Polymerase Chain Reaction , RNAABSTRACT
Prokaryotic cell-free coupled transcription-translation (TX-TL) systems are emerging as a powerful tool to examine natural product biosynthetic pathways in a test tube. The key advantages of this approach are the reduced experimental time scales and controlled reaction conditions. To realize this potential, it is essential to develop specialized cell-free systems in organisms enriched for biosynthetic gene clusters. This requires strong protein production and well-characterized synthetic biology tools. The Streptomyces genus is a major source of natural products. To study enzymes and pathways from Streptomyces, we originally developed a homologous Streptomyces cell-free system to provide a native protein folding environment, a high G+C (%) tRNA pool, and an active background metabolism. However, our initial yields were low (36 µg/mL) and showed a high level of batch-to-batch variation. Here, we present an updated high-yield and robust Streptomyces TX-TL protocol, reaching up to yields of 266 µg/mL of expressed recombinant protein. To complement this, we rapidly characterize a range of DNA parts with different reporters, express high G+C (%) biosynthetic genes, and demonstrate an initial proof of concept for combined transcription, translation, and biosynthesis of Streptomyces metabolic pathways in a single "one-pot" reaction.
Subject(s)
Metabolic Engineering/methods , Multigene Family , Protein Biosynthesis/genetics , Streptomyces/genetics , Streptomyces/metabolism , Biological Products/metabolism , Cell Extracts , DNA/metabolism , Heme/biosynthesis , Melanins/biosynthesis , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Synthetic Biology/methodsABSTRACT
Dengue virus (DENV) is the causative agent of one of the most important febrile illnesses worldwide. Four DENV serotypes are responsible for a broad clinical spectrum of the disease. Positive controls are costly and required for the validation of molecular test results of DENV serotyping. In this study, we describe the in silico design of the qDENV-Control plasmid with the target sequences to oligonucleotides and probes widely used for DENV serotyping, and the subsequent production of qDENV Control RNA by T7-driven run-off in vitro transcription. The qDENV Control RNA was successfully used to validate the positive and negative DENV serotyping results, allowing its incorporation in routine in-house protocols for virologic surveillance. This Control RNA allowed the absolute quantification of viral RNA copies from unknown samples as required in several fundamental studies.
Subject(s)
Dengue Virus/classification , RNA, Viral/analysis , RNA, Viral/genetics , Computer Simulation , DNA Primers/genetics , DNA Probes/genetics , Dengue/virology , Humans , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Serogroup , Serotyping , Transcription, GeneticABSTRACT
Trypanosomatid parasites are causative agents of neglected human diseases. Their lineage diverged early from the common eukaryotic ancestor, and they evolved singular mechanisms of gene expression that are crucial for their survival. Studies on unusual and essential molecular pathways lead to new drug targets. In this respect, assays to analyze transcriptional activity will provide useful information to identify essential and specific factors. However, the current methods are laborious and do not provide global and accurate measures. For this purpose, a previously reported radiolabeling in vitro nascent mRNA methodology was used to establish an alternative fluorescent-based assay that is able to precisely quantify nascent mRNA using both flow cytometry and a high-content image system. The method allowed accurate and global measurements in Trypanosoma brucei, a representative species of trypanosomatid parasites. We obtained data demonstrating that approximately 70% of parasites from a population under normal growth conditions displayed mRNA transcriptional activity, whilst the treatment with α-amanitin (75 µg/ml) inhibited the polymerase II activity. The adaptation of the method also allowed the analyses of the transcriptional activity during the cell cycle. Therefore, the methodology described herein contributes to obtaining precise measurements of transcriptional rates using multiparametric analysis. This alternative method can facilitate investigations of genetic and biochemical processes in trypanosome parasites and consequently provide additional information related to new treatment or prophylaxis strategies involving these important human parasites.
Subject(s)
Flow Cytometry/methods , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Animals , Fluorescence , Humans , RNA, Messenger/genetics , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/genetics , Trypanosomiasis, African/parasitologyABSTRACT
Whole-transcriptome evaluation by next-generation sequencing (NGS) has been widely applied in the investigation of diverse transcriptional scenarios. In many clinical situations, including needle biopsy samples or laser microdissected cells, limited amounts of RNA are usually available for the assessment of the whole transcriptome. Here, we describe an mRNA amplification protocol based on in vitro T7 transcription for transcriptome evaluation by NGS. Initially, we performed RNAseq from two human mammary epithelial cell lines and evaluated several aspects of the transcriptomes generated by linear amplification of Poly (A)(+) mRNA species, including transcript representation, variability and abundance. Our protocol showed to be efficient with respect to full-length transcript coverage and quantitative expression levels. We then evaluated the applicability of using this protocol in a more realistic research scenario, analyzing tumor tissue samples microdissected by laser capture. In order to increase the quantification power of the libraries only the 3' end of transcripts were sequenced. We found highly reproducible RNAseq data among amplified tumor samples, with a median Spearman's correlation of 80%, strongly suggesting that the amplification step and library protocol preparation lead to a consistent transcriptional profile. Altogether, we established a robust protocol for assessing the polyadenylated transcriptome derived from limited amounts of total RNA that is applicable to all NGS platforms.