Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.699
Filter
1.
Biol Res ; 57(1): 50, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113128

ABSTRACT

BACKGROUND: In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology. RESULTS: The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host. CONCLUSIONS: This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.


Subject(s)
Gastrointestinal Microbiome , Hemolymph , Monophenol Monooxygenase , Probiotics , Animals , Bees/cytology , Bees/drug effects , Bees/enzymology , Bees/microbiology , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Hemocytes , Hemolymph/cytology , Immunity, Innate , Italy , Monophenol Monooxygenase/metabolism , Probiotics/administration & dosage
2.
Front Immunol ; 15: 1435180, 2024.
Article in English | MEDLINE | ID: mdl-39114658

ABSTRACT

Introduction: Introduction: The influenza virus primarily targets the respiratory tract, yet both the respiratory and intestinal systems suffer damage during infection. The connection between lung and intestinal damage remains unclear. Methods: Our experiment employs 16S rRNA technology and Liquid Chromatography-Mass Spectrometry (LC-MS) to detect the impact of influenza virus infection on the fecal content and metabolites in mice. Additionally, it investigates the effect of influenza virus infection on intestinal damage and its underlying mechanisms through HE staining, Western blot, Q-PCR, and flow cytometry. Results: Our study found that influenza virus infection caused significant damage to both the lungs and intestines, with the virus detected exclusively in the lungs. Antibiotic treatment worsened the severity of lung and intestinal damage. Moreover, mRNA levels of Toll-like receptor 7 (TLR7) and Interferon-b (IFN-b) significantly increased in the lungs post-infection. Analysis of intestinal microbiota revealed notable shifts in composition after influenza infection, including increased Enterobacteriaceae and decreased Lactobacillaceae. Conversely, antibiotic treatment reduced microbial diversity, notably affecting Firmicutes, Proteobacteria, and Bacteroidetes. Metabolomics showed altered amino acid metabolism pathways due to influenza infection and antibiotics. Abnormal expression of indoleamine 2,3-dioxygenase 1 (IDO1) in the colon disrupted the balance between helper T17 cells (Th17) and regulatory T cells (Treg cells) in the intestine. Mice infected with the influenza virus and supplemented with tryptophan and Lactobacillus showed reduced lung and intestinal damage, decreased Enterobacteriaceae levels in the intestine, and decreased IDO1 activity. Discussion: Overall, influenza infection caused damage to lung and intestinal tissues, disrupted intestinal microbiota and metabolites, and affected Th17/Treg balance. Antibiotic treatment exacerbated these effects. Supplementation with tryptophan and Lactobacillus improved lung and intestinal health, highlighting a new understanding of the lung-intestine connection in influenza-induced intestinal disease.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Lung , Orthomyxoviridae Infections , Animals , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Mice , Lung/immunology , Lung/microbiology , Lung/metabolism , Lung/virology , Toll-Like Receptor 7/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice, Inbred C57BL , Intestines/immunology , Intestines/microbiology , Intestines/virology , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Signal Transduction , RNA, Ribosomal, 16S/genetics , Membrane Glycoproteins
3.
J Ethnopharmacol ; : 118680, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117021

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY: In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS: COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS: Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1ß and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION: The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.

4.
Front Vet Sci ; 11: 1433514, 2024.
Article in English | MEDLINE | ID: mdl-39100761

ABSTRACT

Since the use of antibiotics as growth promoters in animal feed has been restricted or banned in several countries, finding suitable alternatives is crucial for maintaining animal health. In this study, a novel formate acidifier named sodium diformate (NaDF) was synthesized, and the effects on growth performance and the prevention effects against Salmonella enterica serovar Pullorum infections in chickens were assessed. In broilers, NaDF supplementation improved growth performance, as evidenced by increased body weights and reduced feed conversion ratios. At 38 days of age, NaDF supplementation increased the levels of growth-hormone and ghrelin in the serum, lowered pH values in the gut, improved duodenal morphology, as shown by increased villus length/crypt depth ratios. NaDF also modulated the abundance of beneficial and harmful bacteria without changing the general microbiota diversity and short-chain fatty acids levels, which would be beneficial for maintaining gut homeostasis during its use. NaDF exhibited a broad spectrum of antibacterial activity in vitro. Supplementation with NaDF effectively decreased S. Pullorum colonization in the cecum, liver and spleen in chickens, and mitigated pathological changes in the tissues. Therefore, as a novel acidifier, NaDF can improve chicken growth performance by increasing growth-related hormones levels while maintaining the diversity of gut microbiota, and also resist intestinal bacterial infection. These results provided evidences for the application of NaDF as an effective and safe animal feed in poultry farming.

5.
Adv Sci (Weinh) ; : e2307971, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120490

ABSTRACT

Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.

6.
Open Life Sci ; 19(1): 20220909, 2024.
Article in English | MEDLINE | ID: mdl-39119482

ABSTRACT

Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.

7.
Neurochem Res ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088165

ABSTRACT

Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.

8.
Vopr Pitan ; 93(3): 14-22, 2024.
Article in Russian | MEDLINE | ID: mdl-39024167

ABSTRACT

The problem of the increasing obesity among children and adolescents is urgent. One of the most interesting and promising directions in this area is to study the correlation of individual microorganisms with the presence and absence of obesity. The aim of the study was to assess the correlation between the isolation frequency of individual microorganisms and the presence of obesity in children and adolescents and to identify possible associations between different groups of microorganisms in obese patients. Material and methods. 156 male and female patients aged from 7 to 17 years were included in the study. The patients were divided into a control group (n=23) (healthy patients), a group of children with exogenous constitutional obesity without complications (n=25), a group of children who had one or more complications of obesity (n=108). For all patients body mass index (BMI) was calculated. Additional examination included a cultural study of the intestinal microbiota. Fecal samples of patients were used as the material. Preparation of the material for inoculation, inoculation and subsequent incubation of the Petri plates were carried out under anaerobic conditions. The isolated microorganisms were identified using the MALDI-ToF mass spectrometry method. Results. When analyzing the correlation between obesity and individual taxa, statistically significant differences were obtained only for Bifidobacterium spp. (p=0.045). The analysis of the correlation between obesity and the isolation of individual microorganisms has shown that Bifidobacterium pseudocatenulatum (p=0.012), Candida albicans (p=0.012), Streptococcus salivarius (p=0.016), Bifidobacterium breve (p=0.003), Veillonella parvula (p=0.013), Haemophilus parainfluenzae (p=0.003), Streptococcus oralis (p=0.001), Weissella confusa (p=0.036), Enterococcus mundtii (p=0.036) were isolated less often in patients with obesity than in control group. Conclusion. The results of the study has demonstrated that only one taxon, Bifidobacterium spp., had a significant correlation with the absence of obesity. At the same time, a reliable correlation with the absence of obesity was also established for individual microorganisms, including several microorganisms from Bifidobacterium spp. and Streptococcus spp., which may enable to establish certain microbiological predictors of obesity and its complications.


Subject(s)
Gastrointestinal Microbiome , Humans , Male , Female , Child , Adolescent , Obesity/microbiology , Bacteria, Anaerobic/isolation & purification , Pediatric Obesity/microbiology
9.
Poult Sci ; 103(9): 104027, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39024690

ABSTRACT

Phytic acid (PA) is a natural antioxidant with various biological activities, providing protective effects in multiple animals. Ochratoxin A (OTA) is a mold toxin commonly found in feed, which induces multi-organ damage, with kidney being the target organ of its toxicity. This study investigates the protective effects of PA on OTA-induced renal damage and its potential mechanisms in chicks. The results demonstrates that PA treatment restores OTA-induced renal pathological injuries, reverses the diminished activities of antioxidant enzymes, reduces the accumulation of malondialdehyde, and normalizes the expression of pro-inflammatory cytokines, which confirms that PA can alleviate OTA-induced renal damage. Further investigations reveal that OTA-induced renal injury accompanied by an increase in tissue iron content and the transcription levels of ferroptosis-related genes (TFR, ACSL4, and HO-1), and a decrease in the levels of SLC7A11 and GPX4. PA treatment reverses all these effects, indicating that PA mitigates OTA-induced renal ferroptosis. Moreover, PA supplementation improves intestinal morphology and mucosal function, corrects OTA-induced changes in the intestinal microbiota. Besides, PA microbiota transplantation alleviates renal inflammation and oxidative stress caused by OTA. In conclusion, PA plays a protective role against renal damage through the regulation of ferroptosis and the intestinal microbiota, possibly providing novel insights into the control and prevention of OTA-related nephrotoxicity.

10.
Front Cell Infect Microbiol ; 14: 1436547, 2024.
Article in English | MEDLINE | ID: mdl-39027136

ABSTRACT

Introduction: In this study, the seasonal differences in the intestinal microbiota of Chinese mitten crab (Eriocheir sinensis) larvae were investigated at different sites in the intertidal zone of the Yangtze River Estuary. Methods: 16S rRNA high-throughput sequencing technology was used to compare and analyze the microbial community structure in the intestines of juvenile crab from different seasons. Results: The results showed that the main microbial phyla in all seasons and sites were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, which accounted for 97.1% of the total microbiota. Composition analysis revealed that the relative abundance of Proteobacteria decreased from summer to winter at each station, whereas Bacteroidetes showed the opposite trend. Alpha diversity analysis showed that species richness increased from summer to winter at the upstream site (P < 0.05), but decreased at the downstream site (P < 0.05), with no significant differences observed in other comparisons. Biomarker species analysis showed that juvenile crab exhibited a more specialized microbial community in summer compared with autumn and winter. Co-occurrence network analysis revealed that microbial interaction network complexity was lower in autumn compared with summer and autumn. Functional prediction analysis showed that the microbial community only exhibited seasonal differences in amino acid biosynthesis, cofactor, prosthetic group, electron carrier, and vitamin biosynthesis, aromatic compound degradation, nucleotide and nucleoside degradation, and tricarboxylic acid cycle pathways. Discussion: The results indicated that the microbiota did not significantly differ among sites, and seasonal variation was a main factor influencing the differences in intestinal microbiota of Chinese mitten juvenile crab. Moreover, the microbial community was more complex in summer compared with autumn and winter.


Subject(s)
Brachyura , Estuaries , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Seasons , Animals , Brachyura/microbiology , RNA, Ribosomal, 16S/genetics , China , High-Throughput Nucleotide Sequencing , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Biodiversity , Larva/microbiology , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Proteobacteria/genetics , Proteobacteria/classification , Proteobacteria/isolation & purification , Firmicutes/genetics , Firmicutes/classification , Firmicutes/isolation & purification , DNA, Bacterial/genetics , Rivers/microbiology
11.
Acta Pharm Sin B ; 14(7): 3184-3204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027245

ABSTRACT

Helicobacter pylori (H. pylori) infection remains the leading cause of gastric adenocarcinoma, and its eradication primarily relies on the prolonged and intensive use of two antibiotics. However, antibiotic resistance has become a compelling health issue, leading to H. pylori eradication treatment failure worldwide. Additionally, the powerlessness of antibiotics against biofilms, as well as intracellular H. pylori and the long-term damage of antibiotics to the intestinal microbiota, have also created an urgent demand for antibiotic-free approaches. Herein, we describe an antibiotic-free, multifunctional copper-organic framework (HKUST-1) platform encased in a lipid layer comprising phosphatidic acid (PA), rhamnolipid (RHL), and cholesterol (CHOL), enveloped in chitosan (CS), and loaded in an ascorbyl palmitate (AP) hydrogel: AP@CS@Lip@HKUST-1. This platform targets inflammatory sites where H. pylori aggregates through electrostatic attraction. Then, hydrolysis by matrix metalloproteinases (MMPs) releases CS-encased nanoparticles, disrupting bacterial urease activity and membrane integrity. Additionally, RHL disperses biofilms, while PA promotes lysosomal acidification and activates host autophagy, enabling clearance of intracellular H. pylori. Furthermore, AP@CS@Lip@HKUST-1 alleviates inflammation and enhances mucosal repair through delayed Cu2+ release while preserving the intestinal microbiota. Collectively, this platform presents an advanced therapeutic strategy for eradicating persistent H. pylori infection without inducing drug resistance.

12.
Hepatol Int ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031319

ABSTRACT

BACKGROUND: Acute-on-chronic liver failure (ACLF) patients exhibit an imbalance in intestinal microbiota, and bile acids (BAs) can affect the composition of intestinal microbiota. Although Artificial liver support system (ALSS) is a treatment for ACLF, the impact of ALSS on intestinal microbiota and serum BA profiles of ACLF patients remains unclear. METHODS: A prospective study was conducted, which included 51 patients diagnosed with ACLF. These patients were stratified into two groups based on the utilization of an ALSS during their treatment period: a standard medical treatment group (SMT group), comprising 19 patients, and an ALSS combined with SMT group (ALSS group), comprising 32 patients. Blood and stool samples were collected from the patients on the day of admission and 14 days after treatment. Additionally, eight healthy controls were recruited, and their stool samples were also collected. The intestinal microbiota was sequenced using the 16S rRNA sequencing technique, while the serum BA profiles were determined using ultra-performance liquid chromatography/mass spectrometry. RESULTS: ACLF patients exhibited imbalances in intestinal microbiota and abnormalities in BA profiles. Compared to SMT alone, the combined ALSS and SMT was more effective in regulating intestinal microbiota imbalance and increasing the concentrations of ursodeoxycholic acid and glycoursodeoxycholic acid. Correlation analysis revealed a significant correlation between intestinal microbiota and Bas. Furthermore, the preliminary correlation heatmap indicated that the Faecalibaculum, Gemmiger, and taurochenodeoxycholic acid were associated with clinical improvement. CONCLUSIONS: Our study identified the compositional characteristics of the intestinal microbiota and serum BA in ACLF patients, emphasizing the impact of ALSS on both intestinal microbiota and serum BA profiles.

13.
EBioMedicine ; 106: 105246, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029427

ABSTRACT

BACKGROUND: The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS: Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS: Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION: We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING: Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).

14.
Transfus Med ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045780

ABSTRACT

Our objective is to review motives and barriers for non-reproductive, living substance of human origin (SoHO) donation, and to extend existing typologies beyond blood. The expansion of SoHO collection is currently unmatched by increased living donors. Thus, there is a critical need to understand how to effectively recruit and retain donors to ensure a sustainable supply of SoHO. We undertook a rapid review and narrative synthesis of published, peer-reviewed literature reporting on motives and/or barriers for living SoHO donation (whole-blood, blood products [2009-2023], bone marrow/stem cells, cord blood, organ, human breast milk, intestinal microbiota [2000-2023]). Results were interpreted through directed qualitative content analysis using an extended typology of motives/barriers largely drawn from blood donation research, and subsequently refined based on results to be inclusive of other SoHO. 234 articles with 237 studies met review criteria. Most were quantitative (74.3%), conducted in Western countries (63.8%), focused on blood donation (64.2%), reported motives and barriers (51.9%) and did not examine differences by donor characteristics or history (74%). We present a revised typology inclusive of motives/barriers for donation of substances beyond blood. This shows while broader motives and barriers are shared across substances donated, there are critical differences at the subcategory level that may account for heterogeneity in results of prior interventions. The nuances in how broad categories of motives and barriers manifest across different SoHO are critical for blood collection agencies to consider as they attempt to expand collection of products beyond whole-blood, plasma, and platelets. WHAT IS KNOWN ABOUT THE TOPIC?: Blood collection agencies (BCAs) continue to expand SoHO product collection beyond whole-blood, plasma, and platelets. The demand for SoHO is currently unmatched by increased living donors. The need to understand how to recruit new and retain existing living donors to ensure a sustainable supply of SoHO remains critical. However, there is no available synthesis of the factors, such as motives/facilitators and barriers/deterrents, to inform our understanding. WHAT IS NEW?: Comprehensively reviewed evidence for motives and barriers of willing/actual donors and nondonors across all types of non-reproductive living SoHO donation. Explored variations in motives and barriers based on substance, donor history and demographic differences (gender, age, ethnicity or culture). Extended typology of motives and barriers inclusive of all non-reproductive living SoHO, beyond solely whole-blood and blood products. Identified that while there are commonalities in the overarching motive and barrier categories across substances (e.g., prosocial motivation, low self-efficacy), within these broader constructs there are differences at the subcategory level (e.g., low-self efficacy was about eligibility, lifestyle barriers, or lack/loss of financial or material resources depending on the substance donated) that are crucial for development of future interventions and for BCAs to consider as they expand SoHO product collection. Highlighted the continued focus on motives and barriers for whole-blood and blood product donation to the exclusion of other, particularly newer, SoHO; lack of qualitative work for newer SoHO; and lack of consideration of differences based on donor characteristics (especially ethnicity/culture) and donor history, which limits our understanding. WHAT ARE THE KEY QUESTIONS FOR FUTURE WORK ON THE TOPIC?: What are the motives and barriers (in both qualitative and quantitative studies) for donation of newer SoHO such as stem cells, cord blood, human milk, and intestinal microbiota? Are there differences in motives and barriers within and across SoHO that are informed by individual and contextual-level factors? How can we develop interventions that respond to the nuances of motives and barriers present across different forms of SoHO that are effective in encouraging new and maintaining continuing donors?

15.
Inflammopharmacology ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039348

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), a chronic inflammatory gastrointestinal disorder, is becoming increasingly prevalent worldwide. Ophiopogonin D, which is derived from Ophiopogon japonicus, exhibits anti-inflammatory and antioxidant properties, yet its therapeutic potential in UC remains unclear. METHODS: In this study, we employed a mouse model of DSS-induced colitis to assess the impact of Ophiopogonin D on various parameters, including weight loss, bloody stools, and inflammation in the colon. RESULTS: Ophiopogonin-D treatment significantly mitigated these DSS-induced effects, improved colon permeability, and modulated inflammatory markers like ZO-1, MUC-2, TNF-α, and IL-1ß in mice compared with the control. Furthermore, compared to the DSS-treatment group, Ophiopogonin-D treatment improved the α- and ß-diversity indices of the mouse intestinal microbiota, along with an increase in the abundance of genera such as Akkermansia (AKK) and a decrease in the abundance of genera such as Enterobacter. Notably, propionic acid, a metabolite of AKK, demonstrated significant improvement in the symptoms of DSS-induced colitis in mice compared to the control. Moreover, propionic-acid administration also resulted in alterations in the levels of inflammatory factors and calreticulin within the intestinal tissues. CONCLUSION: Overall, Ophiopogonin D significantly affects intestinal microbiota composition, thereby improving symptoms of DSS-induced colitis in mice. These findings present promising therapeutic strategies and potential pharmaceutical candidates for the treatment of ulcerative colitis.

16.
Curr Issues Mol Biol ; 46(7): 7339-7352, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057076

ABSTRACT

Low back pain is a health problem that represents the greatest cause of years lived with disability. This research seeks to evaluate the bacterial composition of the intestinal microbiota of two similar groups: one with chronic low back pain (PG) and the control group (CG). Clinical data from 73 participants and bacterial genome sequencing data from stool samples were analyzed. There were 40 individuals in PG and 33 in CG, aged between 20 and 50 years and with a body mass index of up to 30 kg/m2. Thus, the intragroup alpha diversity and intergroup beta diversity were analyzed. The significant results (p < 0.05) showed greater species richness in PG compared to CG. Additionally, a greater abundance of the species Clostridium difficile in PG was found along with 52 species with significantly different average relative abundances between groups (adjusted p < 0.05), with 36 more abundant species in PG and 16 in CG. We are the first to unveil significant differences in the composition of the intestinal bacterial microbiota of individuals with chronic low back pain who are non-elderly, non-obese and without any other serious chronic diseases. It could be a reference for a possible intestinal bacterial microbiota signature in chronic low back pain.

17.
Food Chem ; 460(Pt 1): 140514, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39047471

ABSTRACT

Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.

18.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1297-1305, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39051075

ABSTRACT

OBJECTIVE: To investigate the effect of Yigong San (YGS) on learning and memory abilities of rats with lipopolysaccharide (LPS)­induced cognitive decline and explore its possible mechanism in light of intestinal microbiota. METHODS: Forty SD rats were randomly divided into control group, model group, donepezil (1.3 mg/kg) group, and high-dose (5.25 g/kg) and low-dose (2.63 g/kg) YGS treatment groups. After 24 days of treatment with the corresponding drugs or water by gavage, the rats in the latter 4 groups received an intraperitoneal injection of LPS (0.5 mg/kg) to establish models of Alzheimer's disease (AD). Water maze test and HE staining were used to evaluate the changes in learning and memory abilities and pathomorphology of the hippocampus. The changes in gut microbial species of the rats were analyzed with 16S rRNA sequencing, and the levels of IL-6, TNF-α, and IL-1ß in the brain tissue and serum were detected using ELISA. RESULTS: Compared with the AD model group, the YGS-treated rats showed significantly shortened escape latency on day 5 after modeling, reduced neuronal degeneration and necrosis in the hippocampus, lowered pathological score of cell damage, and decreased levels IL-6, TNF-α and IL-1ß in the brain tissue and serum. The YGS-treated rats showed also obvious reduction of Alpha diversity indicators (ACE and Chao1) of intestinal microbiota with significantly increased abundance of Prevotellaceae species at the family level and decreased abundance of Desulfovibrionaceae, which were involved in such metabolic signaling pathways as cell community prokaryotes, membrane transport, and energy metabolism. CONCLUSION: YGS improves learning and memory abilities and hippocampal pathomorphology in AD rat models possibly by regulating the abundance of intestinal microbial species such as Prevotellaceae to affect the metabolic pathways for signal transduction, cofactors, and vitamin metabolism.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Hippocampus , Rats, Sprague-Dawley , Animals , Alzheimer Disease/therapy , Rats , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Hippocampus/metabolism , Memory , Maze Learning , Lipopolysaccharides , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Male , Interleukin-6/metabolism , Interleukin-6/blood , Interleukin-1beta/metabolism
19.
Genes Genomics ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990271

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the 3rd most common cancer in the world and colonic carcinogenesis is a multifactorial disease that involves environmental and genetic factors. Gut microbiota plays a critical role in the regulation of intestinal homeostasis. Increasing evidence shows that the gut microbiome plays a role in CRC development and may be a biomarker for early diagnosis. OBJECTIVE: This study aimed to determine the clinical prognostic significance of gut microbiota in CRC patients in the Turkish population by metagenomic analysis and to determine the microbial composition in tumor tissue biopsy samples. METHODS: Tissue biopsies were taken from the participants with sterile forceps during colonoscopy and stored at -80 °C. Then, DNA isolation was performed from the tissue samples and the V3-V4 region of the 16 S rRNA gene was sequenced on the Illumina MiSeq platform. Quality control of the obtained sequence data was performed. Operational taxonomic units (OTUs) were classified according to the Greengenes database. Alpha diversity (Shannon index) and beta diversity (Bray-Curtis distance) analyses were performed. The most common bacterial species in CRC patients and healthy controls were determined and whether there were statistically significant differences between the groups was tested. RESULTS: A total of 40 individuals, 13 CRC patients and 20 healthy control individuals were included in our metagenomic study. The mean age of the patients was 64.83 and BMI was 25.85. In CRC patients, the level of Bacteroidetes at the phylum taxonomy was significantly increased (p = 0.04), the level of Clostridia at the class taxonomy was increased (p = 0.23), and the level of Enterococcus at the genus taxonomy was significantly increased (p = 0.01). When CRC patients were compared with the control group, significant increases were detected in the species of Gemmiger formicilis (p = 0.15), Prevotella copri (p = 0.02) and Ruminococcus bromii (p = 0.001) at the species taxonomy. CONCLUSIONS: Metagenomic analysis of intestinal microbiota composition in CRC patients provides important data for determining the treatment options for these patients. The results of this study suggest that it may be beneficial in terms of early diagnosis, poor prognosis and survival rates in CRC patients. In addition, this metagenomic study is the first study on the colon microbiome associated with CRC mucosa in the Turkish population.

20.
Animals (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998024

ABSTRACT

This study aimed to investigate the effects of bile acids (BAs) supplementation on fatty liver hemorrhagic syndrome (FLHS), production performance, and physiological and quality characteristics of laying hen eggs. Sixty Sanhuang laying hens, aged 28 weeks, were randomly allocated to six dietary treatments over a 4-week period, including the control (CON) group (feeding basal diet), the high-fat diet (HFD)-treated group (basal diet containing 10% soybean oil), and HFD supplemented with 0.01% and 0.02% of chenodeoxycholic acid (CDCA) or hyodeoxycholic acid (HDCA) groups. Production performance, egg quality, liver morphology, serum biochemical indexes, antioxidant capacity, proinflammatory cytokines, and intestinal microbiota were evaluated. The average body weight in 0.01% CDCA was larger than in the HFD group (p < 0.05). Eggshell Thickness in the CON group was greater than in the HFD, 0.01% CDCA, and HDCA groups (p < 0.05). Albumen height in the 0.02% HDCA group was higher than the HFD group (p < 0.05). Eggshell weight in the HFD group was less than the CON group (p < 0.05). Haugh unit (HU) in the HDCA group was larger than the HFD group (p < 0.05). Albumen weight in the 0.02% HDCA group was greater than the CON and HFD groups (p < 0.05). In the HFD group, the levels of triglyceride (TG), total cholesterol (TC), and low-density lipo-protein cholesterol (LDL-C) were surpassing the other groups (p < 0.05). The levels of catalase (CAT) and total superoxide dismutase (T-SOD) in the HFD group was smaller than the other groups (p < 0.05). The level of malondialdehyde (MDA) in the HFD group was higher than in the other groups (p < 0.05). Tumor necrosis factor-α (TNF-α) levels were larger in the HFD group than in the other groups (p < 0.05). The 16S rRNA sequencing analysis indicated significant variations in the relative abundance of specific bacterial populations among the different treatment groups. The treatment and CON groups exhibited a higher presence of bacteria that inhibit host energy absorption or promote intestinal health such as Firmicutes, Bacteroidetes, and Ruminococcus, whereas the HFD group showed an increased prevalence of potentially pathogenic or deleterious bacteria, such as Desulfovibrio spp. In conclusion, the supplementation of BAs in poultry feed has been demonstrated to effectively mitigate the detrimental effects of FLHS in laying hens. This intervention regulates lipid metabolism, bolsters antioxidant defenses, reduces inflammation, and modulates the gut microbiota, offering a novel perspective on the application of BAs in the poultry industry.

SELECTION OF CITATIONS
SEARCH DETAIL