Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Neurocase ; 30(2): 77-82, 2024 04.
Article in English | MEDLINE | ID: mdl-38795053

ABSTRACT

L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare autosomal recessive disease characterized by elevated levels of hydroxyglutaric acid in the body fluids and brain with abnormal white matter. We present two siblings with psychomotor retardation and quadriparesis. Their brain imaging showed diffuse bilateral symmetrical involvement of the cerebral cortex, white matter, basal ganglia and cerebellum. The whole exome sequence studies revealed a homozygous likely pathogenic variant on chromosome 14q22.1 (NM_024884.2: c.178G > A; pGly60Arg) in the gene encoding for L-2-hydroxyglutarate dehydrogenase (L2HGDH) (OMIM #236792). Therefore, using the L2HGDH gene study is beneficial for L2HGA diagnosis.


Subject(s)
Alcohol Oxidoreductases , Siblings , Humans , Male , Egypt , Alcohol Oxidoreductases/genetics , Female , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/diagnostic imaging , Magnetic Resonance Imaging , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/diagnostic imaging , Brain Diseases, Metabolic/diagnosis , Brain/diagnostic imaging , Brain/pathology , Child
2.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995940

ABSTRACT

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Subject(s)
Alcohol Oxidoreductases , Brain Diseases, Metabolic, Inborn , Drosophila melanogaster , Models, Molecular , Animals , Humans , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/physiopathology , Drosophila melanogaster/enzymology , Glutarates/metabolism , Mutation , Catalytic Domain/genetics , Substrate Specificity/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
EJHaem ; 4(3): 723-727, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37601838

ABSTRACT

This study investigates whether serum D-2HG (D-2-hydroxyglutarate) produced by the mutated isocitrate dehydrogenase (IDH) can predict IDH mutations in acute myeloid leukemia (AML) at diagnosis. D-2HG and L-2HG are measured by liquid chromatography-tandem mass spectrometry. D-2HG, total 2HG and the D/L ratio (D-2HG/L-2HG) are significantly higher in IDH mutated cases than in IDH wild cases. The optimal cutoff values to predict IDH mutations at 100% sensitivity (specificity 91%-94%) are >588 ng/mL for D-2HG and >2.33 for the D/L ratio. Our study indicates that elevated serum D-2HG and the D/L ratio may serve as noninvasive biomarkers of IDH mutation in AML.

4.
Front Endocrinol (Lausanne) ; 13: 932286, 2022.
Article in English | MEDLINE | ID: mdl-36133305

ABSTRACT

2-Hydroxyglutarate (2HG) overproducing tumors arise in a number of tissues, including the kidney. The tumorigenesis resulting from overproduced 2HG has been attributed to the ability of 2HG alter gene expression by inhibiting α-ketoglutarate (αKG)-dependent dioxygenases, including Ten-eleven-Translocation (TET) enzymes. Genes that regulate cellular differentiation are reportedly repressed, blocking differentiation of mesenchymal cells into myocytes, and adipocytes. In this report, the expression of the enzyme responsible for L2HG degradation, L-2HG dehydrogenase (L2HGDH), is knocked down, using lentiviral shRNA, as well as siRNA, in primary cultures of normal Renal Proximal Tubule (RPT) cells. The knockdown (KD) results in increased L-2HG levels, decreased demethylation of 5mC in genomic DNA, and increased methylation of H3 Histones. Consequences include reduced tubulogenesis by RPT cells in matrigel, and reduced expression of molecular markers of differentiation, including membrane transporters as well as HNF1α and HNF1ß, which regulate their transcription. These results are consistent with the hypothesis that oncometabolite 2HG blocks RPT differentiation by altering the methylation status of chromatin in a manner that impedes the transcriptional events required for normal differentiation. Presumably, similar alterations are responsible for promoting the expansion of renal cancer stem-cells, increasing their propensity for malignant transformation.


Subject(s)
Dioxygenases , Histones , Cell Differentiation/genetics , Chromatin , Dioxygenases/metabolism , Epigenesis, Genetic , Glutarates , Histones/metabolism , Ketoglutaric Acids/metabolism , Kidney/metabolism , Membrane Transport Proteins/metabolism , Oxidoreductases/metabolism , RNA, Small Interfering
5.
Circ Res ; 131(7): 562-579, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36043417

ABSTRACT

BACKGROUND: L-2-hydroxyglutarate (L2HG) couples mitochondrial and cytoplasmic energy metabolism to support cellular redox homeostasis. Under oxygen-limiting conditions, mammalian cells generate L2HG to counteract the adverse effects of reductive stress induced by hypoxia. Very little is known, however, about whether and how L2HG provides tissue protection from redox stress during low-flow ischemia (LFI) and ischemia-reperfusion injury. We examined the cardioprotective effects of L2HG accumulation against LFI and ischemia-reperfusion injury and its underlying mechanism using genetic mouse models. METHODS AND RESULTS: L2HG accumulation was induced by homozygous (L2HGDH [L-2-hydroxyglutarate dehydrogenase]-/-) or heterozygous (L2HGDH+/-) deletion of the L2HGDH gene in mice. Hearts isolated from these mice and their wild-type littermates (L2HGDH+/+) were subjected to baseline perfusion and 90-minute LFI or 30-minute no-flow ischemia followed by 60- or 120-minute reperfusion. Using [13C]- and [31P]-NMR (nuclear magnetic resonance) spectroscopy, high-performance liquid chromatography, reverse transcription quantitative reverse transcription polymerase chain reaction, ELISA, triphenyltetrazolium staining, colorimetric/fluorometric spectroscopy, and echocardiography, we found that L2HGDH deletion induces L2HG accumulation at baseline and under stress conditions with significant functional consequences. In response to LFI or ischemia-reperfusion, L2HG accumulation shifts glucose flux from glycolysis towards the pentose phosphate pathway. These key metabolic changes were accompanied by enhanced cellular reducing potential, increased elimination of reactive oxygen species, attenuated oxidative injury and myocardial infarction, preserved cellular energy state, and improved cardiac function in both L2HGDH-/- and L2HGDH+/- hearts compared with L2HGDH+/+ hearts under ischemic stress conditions. CONCLUSION: L2HGDH deletion-induced L2HG accumulation protects against myocardial injury during LFI and ischemia-reperfusion through a metabolic shift of glucose flux from glycolysis towards the pentose phosphate pathway. L2HG offers a novel mechanism for eliminating reactive oxygen species from myocardial tissue, mitigating redox stress, reducing myocardial infarct size, and preserving high-energy phosphates and cardiac function. Targeting L2HG levels through L2HGDH activity may serve as a new therapeutic strategy for cardiovascular diseases related to oxidative injury.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Glucose/pharmacology , Glutarates , Mammals , Mice , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Oxidative Stress , Oxygen , Phosphates/pharmacology , Reactive Oxygen Species/metabolism
6.
J Neuropathol Exp Neurol ; 81(7): 502-510, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35582888

ABSTRACT

Isocitrate dehydrogenase-1 (IDH1) mutation is accepted as one of the earliest events in tumorigenesis in gliomas. This mutation causes preferential accumulation of D- relative to L-enantiomer of 2-hydroxyglutarate (2-HG). Minimally invasive techniques to detect IDH1 mutation may prove useful for clinical practice. We adopted 2 different diagnostic approaches to detect IDH1 mutation status in glioma patients: Evaluation of D- and L-2-HG levels in cerebrospinal fluid (CSF), urine, and plasma, and identification of IDH1 mutation using cell-free circulating tumor DNA (ctDNA) in CSF and plasma. Forty-nine glioma patients in different stages were included. Levels of D- and L-2-HG were determined using liquid chromatography-tandem mass spectrometry; IDH1 R132H mutation was determined by digital-PCR. D-2-HG levels and D/L-2-HG ratio (rDL) in CSF and rDL in plasma were significantly higher in the mutant group than in the wild-type group (p = 0.029, 0.032, 0.001, respectively). The IDH1 mutation detection rates in CSF- and plasma-ctDNA were 63.2% and 25.0%, respectively. These data indicate that D-2-HG values in CSF and rDL in plasma and CSF can be considered as significant contributors to the identification of IDH1 mutation status. In addition, detection of IDH1 mutation in CSF-ctDNA from glioma patients provides a basis for future use of ctDNA for minimally invasive clinical assessment of gliomas.


Subject(s)
Brain Neoplasms , Circulating Tumor DNA , Glioma , Brain Neoplasms/pathology , Glioma/pathology , Glutarates , Humans , Isocitrate Dehydrogenase/genetics , Mutation/genetics
7.
J Biol Chem ; 298(2): 101501, 2022 02.
Article in English | MEDLINE | ID: mdl-34929172

ABSTRACT

Activated macrophages undergo metabolic reprogramming, which not only supports their energetic demands but also allows for the production of specific metabolites that function as signaling molecules. Several Krebs cycles, or Krebs-cycle-derived metabolites, including succinate, α-ketoglutarate, and itaconate, have recently been shown to modulate macrophage function. The accumulation of 2-hydroxyglutarate (2HG) has also been well documented in transformed cells and more recently shown to play a role in T cell and dendritic cell function. Here we have found that the abundance of both enantiomers of 2HG is increased in LPS-activated macrophages. We show that L-2HG, but not D-2HG, can promote the expression of the proinflammatory cytokine IL-1ß and the adoption of an inflammatory, highly glycolytic metabolic state. These changes are likely mediated through activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) by L-2HG, a known inhibitor of the HIF prolyl hydroxylases. Expression of the enzyme responsible for L-2HG degradation, L-2HG dehydrogenase (L-2HGDH), was also found to be decreased in LPS-stimulated macrophages and may therefore also contribute to L-2HG accumulation. Finally, overexpression of L-2HGDH in HEK293 TLR4/MD2/CD14 cells inhibited HIF-1α activation by LPS, while knockdown of L-2HGDH in macrophages boosted the induction of HIF-1α-dependent genes, as well as increasing LPS-induced HIF-1α activity. Taken together, this study therefore identifies L-2HG as a metabolite that can regulate HIF-1α in macrophages.


Subject(s)
Glutarates , Hypoxia-Inducible Factor 1, alpha Subunit , Lipopolysaccharides , Macrophages , Glutarates/metabolism , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/enzymology , Macrophages/metabolism
8.
Annu Rev Immunol ; 39: 395-416, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902315

ABSTRACT

Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.


Subject(s)
Immunity, Cellular , Mitochondria , Animals , Humans
9.
Anal Biochem ; 618: 114129, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33556332

ABSTRACT

Our first objective was to develop an approach useful for reliable normalization of 2-hydroxyglutarate (2-HG) intracellular levels. The second objective was to use our data normalization strategy to verify previously published report on the higher d-2-HG level in tumors of colorectal cancer (CRC) patients than in normal colon fragments. We examined various methods of 2-HG level normalization in cell/tissue extracts (number of cells, mass of tissue, total protein). In order to solve the problems with reliable normalization of the 2-HG levels in colon fragments, we proposed a strategy based on relating the concentrations of 2-HG isomers to total thymine concentrations measured by ultra-performance liquid chromatography (UPLC) with UV detection in acid hydrolysates of the cell/tissue extracts. We used a common method of derivatization with diacetyl-l-tartaric anhydride (DATAN) to separate l- and d-2-HG enantiomers. DATAN-derivatized 2-HG was quantitated by UPLC with tandem mass spectrometry (MS/MS) in the selected reaction monitoring (SRM) mode. We observed a linear dependence of the total amount of thymine released from lymphocytes, HCT 116, K562, and PC-3 by acid hydrolysis on their number of cells. Our results showed a significantly higher level of l- and d-2-HG in cancer-free colon than in tumor.


Subject(s)
Colorectal Neoplasms/metabolism , Glutarates/metabolism , Thymine/metabolism , Aged , Colorectal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Tandem Mass Spectrometry
10.
Insect Biochem Mol Biol ; 127: 103493, 2020 12.
Article in English | MEDLINE | ID: mdl-33157229

ABSTRACT

The oncometabolite L-2-hydroxyglutarate (L-2HG) is considered an abnormal product of central carbon metabolism that is capable of disrupting chromatin architecture, mitochondrial metabolism, and cellular differentiation. Under most circumstances, mammalian tissues readily dispose of this compound, as aberrant L-2HG accumulation induces neurometabolic disorders and promotes renal cell carcinomas. Intriguingly, Drosophila melanogaster larvae were recently found to accumulate high L-2HG levels under normal growth conditions, raising the possibility that L-2HG plays a unique role in insect metabolism. Here we explore this hypothesis by analyzing L-2HG levels in 18 insect species. While L-2HG was present at low-to-moderate levels in most of these species (<100 pmol/mg; comparable to mouse liver), dipteran larvae exhibited a tendency to accumulate high L-2HG concentrations (>100 pmol/mg), with the mosquito Aedes aegypti, the blow fly Phormia regina, and three representative Drosophila species harboring concentrations that exceed 1 nmol/mg - levels comparable to those measured in mutant mice that are unable to degrade L-2HG. Overall, our findings suggest that one of the largest groups of animals on earth commonly generate high concentrations of an oncometabolite during juvenile growth, hint at a role for L-2HG in the evolution of dipteran development, and raise the possibility that L-2HG metabolism could be targeted to restrict the growth of key disease vectors and agricultural pests.


Subject(s)
Aedes/metabolism , Calliphoridae/metabolism , Drosophila/metabolism , Glutarates/metabolism , Aedes/growth & development , Animals , Calliphoridae/growth & development , Drosophila/growth & development , Larva/growth & development , Larva/metabolism
11.
Dis Model Mech ; 13(11)2020 11 27.
Article in English | MEDLINE | ID: mdl-32928875

ABSTRACT

L-2-hydroxyglutarate (L-2HG) is an oncometabolite found elevated in renal tumors. However, this molecule might have physiological roles that extend beyond its association with cancer, as L-2HG levels are elevated in response to hypoxia and during Drosophila larval development. L-2HG is known to be metabolized by L-2HG dehydrogenase (L2HGDH), and loss of L2HGDH leads to elevated L-2HG levels. Despite L2HGDH being highly expressed in the kidney, its role in renal metabolism has not been explored. Here, we report our findings utilizing a novel CRISPR/Cas9 murine knockout model, with a specific focus on the role of L2HGDH in the kidney. Histologically, L2hgdh knockout kidneys have no demonstrable histologic abnormalities. However, GC-MS metabolomics demonstrates significantly reduced levels of the TCA cycle intermediate succinate in multiple tissues. Isotope labeling studies with [U-13C] glucose demonstrate that restoration of L2HGDH in renal cancer cells (which lowers L-2HG) leads to enhanced incorporation of label into TCA cycle intermediates. Subsequent biochemical studies demonstrate that L-2HG can inhibit the TCA cycle enzyme α-ketoglutarate dehydrogenase. Bioinformatic analysis of mRNA expression data from renal tumors demonstrates that L2HGDH is co-expressed with genes encoding TCA cycle enzymes as well as the gene encoding the transcription factor PGC-1α, which is known to regulate mitochondrial metabolism. Restoration of PGC-1α in renal tumor cells results in increased L2HGDH expression with a concomitant reduction in L-2HG levels. Collectively, our analyses provide new insight into the physiological role of L2HGDH as well as mechanisms that promote L-2HG accumulation in disease states.


Subject(s)
Alcohol Oxidoreductases/metabolism , Kidney/enzymology , Alcohol Oxidoreductases/genetics , Animals , Brain/enzymology , Brain/pathology , CRISPR-Cas Systems/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Citric Acid Cycle , Fertility , Gene Expression Regulation, Neoplastic , Glutarates/metabolism , Heterozygote , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Metabolic Flux Analysis , Metabolome , Metabolomics , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Succinic Acid/metabolism
12.
Front Bioeng Biotechnol ; 8: 630476, 2020.
Article in English | MEDLINE | ID: mdl-33585425

ABSTRACT

l-2-hydroxyglutarate (l-2HG) is a trifunctional building block and highly attractive for the chemical and pharmaceutical industries. The natural l-lysine biosynthesis pathway of the amino acid producer Corynebacterium glutamicum was extended for the fermentative production of l-2HG. Since l-2HG is not native to the metabolism of C. glutamicum metabolic engineering of a genome-streamlined l-lysine overproducing strain was required to enable the conversion of l-lysine to l-2HG in a six-step synthetic pathway. To this end, l-lysine decarboxylase was cascaded with two transamination reactions, two NAD(P)-dependent oxidation reactions and the terminal 2-oxoglutarate-dependent glutarate hydroxylase. Of three sources for glutarate hydroxylase the metalloenzyme CsiD from Pseudomonas putida supported l-2HG production to the highest titers. Genetic experiments suggested a role of succinate exporter SucE for export of l-2HG and improving expression of its gene by chromosomal exchange of its native promoter improved l-2HG production. The availability of Fe2+ as cofactor of CsiD was identified as a major bottleneck in the conversion of glutarate to l-2HG. As consequence of strain engineering and media adaptation product titers of 34 ± 0 mM were obtained in a microcultivation system. The glucose-based process was stable in 2 L bioreactor cultivations and a l-2HG titer of 3.5 g L-1 was obtained at the higher of two tested aeration levels. Production of l-2HG from a sidestream of the starch industry as renewable substrate was demonstrated. To the best of our knowledge, this study is the first description of fermentative production of l-2HG, a monomeric precursor used in electrochromic polyamides, to cross-link polyamides or to increase their biodegradability.

13.
mBio ; 10(4)2019 07 30.
Article in English | MEDLINE | ID: mdl-31363033

ABSTRACT

Glutarate, a metabolic intermediate in the catabolism of several amino acids and aromatic compounds, can be catabolized through both the glutarate hydroxylation pathway and the glutaryl-coenzyme A (glutaryl-CoA) dehydrogenation pathway in Pseudomonas putida KT2440. The elucidation of the regulatory mechanism could greatly aid in the design of biotechnological alternatives for glutarate production. In this study, it was found that a GntR family protein, CsiR, and a LysR family protein, GcdR, regulate the catabolism of glutarate by repressing the transcription of csiD and lhgO, two key genes in the glutarate hydroxylation pathway, and by activating the transcription of gcdH and gcoT, two key genes in the glutaryl-CoA dehydrogenation pathway, respectively. Our data suggest that CsiR and GcdR are independent and that there is no cross-regulation between the two pathways. l-2-Hydroxyglutarate (l-2-HG), a metabolic intermediate in the glutarate catabolism with various physiological functions, has never been elucidated in terms of its metabolic regulation. Here, we reveal that two molecules, glutarate and l-2-HG, act as effectors of CsiR and that P. putida KT2440 uses CsiR to sense glutarate and l-2-HG and to utilize them effectively. This report broadens our understanding of the bacterial regulatory mechanisms of glutarate and l-2-HG catabolism and may help to identify regulators of l-2-HG catabolism in other species.IMPORTANCE Glutarate is an attractive dicarboxylate with various applications. Clarification of the regulatory mechanism of glutarate catabolism could help to block the glutarate catabolic pathways, thereby improving glutarate production through biotechnological routes. Glutarate is a toxic metabolite in humans, and its accumulation leads to a hereditary metabolic disorder, glutaric aciduria type I. The elucidation of the functions of CsiR and GcdR as regulators that respond to glutarate could help in the design of glutarate biosensors for the rapid detection of glutarate in patients with glutaric aciduria type I. In addition, CsiR was identified as a regulator that also regulates l-2-HG metabolism. The identification of CsiR as a regulator that responds to l-2-HG could help in the discovery and investigation of other regulatory proteins involved in l-2-HG catabolism.


Subject(s)
Glutarates/metabolism , Pseudomonas putida/metabolism , Acyl Coenzyme A/metabolism , Bacterial Proteins/metabolism , Transcription Factors/metabolism
14.
Article in Russian | MEDLINE | ID: mdl-28617386

ABSTRACT

The authors present a case-report of 13 year-old girl with L-2-hydroxyglutaric aciduria [MIM#236792], a rare autosomal/recessive metabolic disorder caused by mutations in the L-encoding 2-hydroxyglutarate dehydrogenase (L2HGDH, 14q21.3). Clinical signs of the disease are presented by predominantly neurological symptoms (epilepsy, cerebellar ataxia, cognitive impairment). The distinctive feature is the specific multifocal lesion of the white matter detected on MRI. The characteristic neuroimaging picture and positive results of biochemical and molecular genetic diagnosis were identified.


Subject(s)
Alcohol Oxidoreductases , Brain Diseases, Metabolic, Inborn , Adolescent , Alcohol Oxidoreductases/genetics , Brain Diseases, Metabolic, Inborn/diagnostic imaging , Brain Diseases, Metabolic, Inborn/genetics , Female , Humans , Magnetic Resonance Imaging , Mutation
15.
Plant Cell Physiol ; 56(9): 1820-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26203119

ABSTRACT

Enzymatic side reactions can give rise to the formation of wasteful and toxic products that are removed by metabolite repair pathways. In this work, we identify and characterize a mitochondrial metabolic repair mechanism in Arabidopsis thaliana involving malate dehydrogenase (mMDH) and l-2-hydroxyglutarate dehydrogenase (l-2HGDH). We analyze the kinetic properties of both A. thaliana mMDH isoforms, and show that they produce l-2-hydroxyglutarate (l-2HG) from 2-ketoglutarate (2-KG) at low rates in side reactions. We identify A. thaliana l-2HGDH as a mitochondrial FAD-containing oxidase that converts l-2HG back to 2-KG. Using loss-of-function mutants, we show that the electrons produced in the l-2HGDH reaction are transferred to the mitochondrial electron transport chain through the electron transfer protein (ETF). Thus, plants possess the biochemical components of an l-2HG metabolic repair system identical to that found in mammals. While deficiencies in the metabolism of l-2HG result in fatal disorders in mammals, accumulation of l-2HG in plants does not adversely affect their development under a range of tested conditions. However, orthologs of l-2HGDH are found in all examined genomes of viridiplantae, indicating that the repair reaction we identified makes an essential contribution to plant fitness in as yet unidentified conditions in the wild.


Subject(s)
Alcohol Oxidoreductases/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Malate Dehydrogenase/metabolism , Mammals/metabolism , Metabolic Networks and Pathways , Mitochondria/metabolism , Alcohol Oxidoreductases/chemistry , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , DNA, Bacterial/genetics , Electron Transport , Electrons , Electrophoresis, Polyacrylamide Gel , Gene Expression Profiling , Gene Expression Regulation, Plant , Glutarates , Ketoglutaric Acids , Kinetics , Metabolome , Metabolomics , Models, Biological , Molecular Sequence Data , Mutation/genetics , Recombinant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...