Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Exp Neurol ; 381: 114880, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972370

ABSTRACT

Research has revealed that prolonged or repeated exposure to isoflurane, a common general anesthetic, can lead to cognitive and behavioral deficiencies, particularly in early life. The brain contains a wealth of LanCL1, an antioxidant enzyme that is thought to mitigate oxidative stress. Nevertheless, its precise function in mammals remains uncertain. This study uncovered a decrease in the expression of LanCL1 due to prolonged isoflurane anesthesia, accompanied by anesthesia-induced neurotoxicity in vivo and in vitro. To better understand LanCL1's essential function, LanCL1 overexpressing adenoviruses were employed to increase LanCL1 levels. The outcomes were analyzed using western blot and immunofluorescence methods. According to the findings, extended exposure to isoflurane anesthesia may lead to developmental neurotoxicity in vivo and in vitro. The anesthesia-induced neurotoxicity was concomitant with a reduction in LanCL1 expression. Moreover, the study revealed that overexpression of LanCL1 can mitigate the neurotoxic effects of isoflurane anesthesia, resulting in improved synaptic growth, less reactive oxygen species, enhanced cell viability and rescued memory deficits in the developing brain. In conclusion, prolonged anesthesia-induced LanCL1 deficiency could be responsible for neurotoxicity and subsequent cognitive impairments in the developing brain. Additional LanCL1 counteracts this neurotoxic effect and protects neurons from long-term isoflurane anesthesia.

2.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397850

ABSTRACT

High-fat-diet (HFD)-induced obesity parallels hypothalamic inflammation and oxidative stress, but the correlations between them are not well-defined. Here, with mouse models targeting the antioxidant gene LanCL1 in the hypothalamus, we demonstrate that impaired hypothalamic antioxidant defense aggravates HFD-induced hypothalamic inflammation and obesity progress, and these could be improved in mice with elevated hypothalamic antioxidant defense. We also show that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator, is implicated in regulating hypothalamic LanCL1 transcription, in collaboration with SP1 through a direct interaction, in response to HFD-induced palmitic acid (PA) accumulation. According to our results, when exposed to HFD, mice undergo a process of overwhelming hypothalamic antioxidant defense; short-time HFD exposure induces ROS production to activate PGC-1α and elevate LanCL1-mediated antioxidant defense, while long-time exposure promotes ubiquitin-mediated PGC-1α degradation and suppresses LanCL1 expression. Our findings show the critical importance of the hypothalamic PGC-1α-SP1-LanCL1 axis in regulating HFD-induced obesity, and provide new insights describing the correlations of hypothalamic inflammation and oxidative stress during this process.

3.
Open Med (Wars) ; 18(1): 20230666, 2023.
Article in English | MEDLINE | ID: mdl-36941990

ABSTRACT

Patients with non-small-cell lung cancer (NSCLC) have a low survival rate. Long non-coding RNA (LncRNA) LANCL1 antisense RNA 1 (LANCL1-AS1) was indicated to be downregulated in NSCLC; however, its detailed function in NSCLC is unanswered. Real-time quantitative polymerase chain reaction revealed the downregulation of LANCL1-AS1 in NSCLC cell lines and subcellular fractionation assay showed that LANCL1-AS1 was mainly located in the cytoplasm of NSCLC cells. Cell counting kit-8, Transwell, and tube formation assays displayed that overexpression of LANCL1-AS1 suppressed NSCLC cell proliferation, migration, invasiveness, and angiogenesis in vitro. Animal experiments validated the tumor-suppressive role of LANCL1-AS1 in tumor-bearing mice. Mechanistically, LANCL1-AS1 upregulated glia maturation factor gamma (GMFG) expression by competitively binding to miR-3680-3p. GMFG knockdown reversed LANCL1-AS1 overexpression-mediated inhibitory impact on NSCLC malignant behaviors. Collectively, LANCL1-AS1 upregulation inhibits the progression of NSCLC by modulating the miR-3680-3p/GMFG axis.

4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674711

ABSTRACT

Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.


Subject(s)
Diabetes Mellitus , Embryophyta , Animals , Humans , Abscisic Acid/metabolism , Myocytes, Cardiac/metabolism , Neuroprotection , Diabetes Mellitus/drug therapy , Plant Growth Regulators/physiology , Embryophyta/metabolism , Hormones , Mammals/metabolism
5.
Cells ; 11(24)2022 12 19.
Article in English | MEDLINE | ID: mdl-36552898

ABSTRACT

Infertility affects lots of couples, half of which are caused by male factors. The LanCL1 gene is highly expressed in testis specifically, which might affect the development of sperms. In order to understand the potential functions of the LanCL1 gene in the testis, this study was conducted with constructed transgenic LanCL1 knockout mice. The mouse breeding experiment, semen analysis and single-cell RNAseq of testicular tissue were performed. Results suggested that the LanCL1 gene would significantly influence the reproduction ability and sperm motility of male mice. Single-cell RNAseq also confirmed the high expression of the LanCL1 gene in the spermatocytes and spermatids. Downregulating the LanCL1 gene expression could promote M2 macrophage polarity to maintain testicular homeostasis. Moreover, the LanCL1 gene could affect both the germ cells and stromal cells through various pathways such as the P53 signaling and the PPAR signaling pathway to disturb the normal process of spermatogenesis. However, no effects of the LanCL1 gene in testosterone synthesis and serum testosterone level were shown. Further studies are needed to discuss the mechanisms of the LanCL1 gene in the various cells of the testis independently.


Subject(s)
Single-Cell Gene Expression Analysis , Testis , Male , Mice , Animals , Testis/metabolism , Sperm Motility , Spermatids/metabolism , Mice, Transgenic , Testosterone/metabolism
6.
Cells ; 11(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36139463

ABSTRACT

Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia.


Subject(s)
Abscisic Acid , Myocytes, Cardiac , AMP-Activated Protein Kinases/metabolism , Abscisic Acid/metabolism , Animals , Blood Glucose/metabolism , Cell Hypoxia , Hormones/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , NADP/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, G-Protein-Coupled , Sirtuin 1/metabolism
7.
Mol Metab ; 53: 101263, 2021 11.
Article in English | MEDLINE | ID: mdl-34098144

ABSTRACT

OBJECTIVE: Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. METHODS: ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [3H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2-/- and wild-type (WT) siblings. RESULTS: Human recombinant LANCL1 binds ABA with a Kd between 1 and 10 µM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2-/- mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 µg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). CONCLUSIONS: LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Abscisic Acid/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Receptors, G-Protein-Coupled/metabolism , Sirtuin 1/metabolism , Glucose/metabolism , HeLa Cells , Humans , Mitochondria/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Receptors, G-Protein-Coupled/genetics
8.
Front Microbiol ; 11: 557342, 2020.
Article in English | MEDLINE | ID: mdl-33117306

ABSTRACT

Altered composition of the gut microbiota has been observed in many neurodegenerative diseases. LanCL1 has been proven to protect neurons and reduce oxidative stress. The present study was designed to investigate alterations of the gut microbiota in LanCL1 knockout mice and to study the interactions between gut bacteria and the brain. Wild-type and LanCL1 knockout mice on a normal chow diet were evaluated at 4 and 8-9 weeks of age. 16s rRNA sequence and untargeted metabolomics analyses were performed to investigate changes in the gut microbiota and feces metabolites. Real-time polymerase chain reaction analysis, AB-PAS staining, and a TUNEL assay were performed to detect alterations in the gut and brain of knockout mice. The serum cytokines of 9-week-old knockout mice, which were detected by a multiplex cytokine assay, were significantly increased. In the central nervous system, there was no increase of antioxidant defense genes even though there was only low activity of glutathione S-transferase in the brain of 8-week-old knockout mice. Interestingly, the gut tight junctions, zonula occludens-1 and occludin, also displayed a downregulated expression level in 8-week-old knockout mice. On the contrary, the production of mucus increased in 8-week-old knockout mice. Moreover, the compositions of the gut microbiota and feces metabolites markedly changed in 8-week-old knockout mice but not in 4-week-old mice. Linear discriminant analysis and t-tests identified Akkermansia as a specific abundant bacteria in knockout mice. Quite a few feces metabolites that have protective effects on the brain were reduced in 8-week-old knockout mice. However, N-acetylsphingosine was the most significant downregulated feces metabolite, which may cause the postponement of neuronal apoptosis. To further investigate the effect of the gut microbiota, antibiotics treatment was given to both types of mice from 5 to 11 weeks of age. After treatment, a significant increase of oxidative damage in the brain of knockout mice was observed, which may have been alleviated by the gut microbiota before. In conclusion, alterations of the gut microbiota and feces metabolites alleviated oxidative damage to the brain of LanCL1 knockout mice, revealing that an endogenous feedback loop mechanism of the microbiota-gut-brain axis maintains systemic homeostasis.

9.
Onco Targets Ther ; 13: 7653-7664, 2020.
Article in English | MEDLINE | ID: mdl-32821124

ABSTRACT

BACKGROUND: Prostate cancer is one of the most common malignancies in urology, especially in developed countries. Our previous studies showed that Lanthionine synthase C-like protein 1 (LanCL1) can promote the proliferation of prostate cancer cells and protect cells from oxidative stress. Also, LanCL1 protects cells by inhibiting the JNK signaling pathway after H2O2 treatment. MATERIALS AND METHODS: In our study, we analyzed the data of RNA-seq to identify the DEGs after LanCL1 overexpression. We performed a functional enrichment analysis with gene set enrichment analysis (GSEA) and a database for annotation, visualization, and integrated discovery (DAVID). We also identified the critical hub gene correlated with disease prognosis by Cox regression analysis. RESULTS: A total of 8928 DEGs were identified. Through the analysis of GO and KEGG, we found that DEGs are significantly enriched in categories related to metabolism, cancer-related signaling pathways, and inflammation. The top 15 hub genes were then identified and ranked by degree from the protein-protein interaction network. Survival analysis showed 4 hub genes related to disease prognosis and ICAM1 expression is an independent risk factor for the prognosis. CONCLUSION: Our results suggest the critical genes and pathways that might play key roles after LanCL1 overexpression in prostate cancer. We also provide candidate gene targets that might play important roles in prostate cancer development.

10.
Brain Res Bull ; 142: 216-223, 2018 09.
Article in English | MEDLINE | ID: mdl-30075199

ABSTRACT

Lanthionine synthetase C-like protein 1 (LanCL1) is homologous to prokaryotic lanthionine cyclases, and has been shown to have novel functions in neuronal redox homeostasis. A recent study showed that LanCL1 expression was developmental and activity-dependent regulated, and LanCL1 transgene protected neurons against oxidative stress. In the present study, the potential protective effects of LanCL1 against ischemia was investigated in an in vitro model mimicked by oxygen and glucose deprivation (OGD) in neuronal HT22 cells. We found that OGD exposure induced a temporal increase and persistent decreases in the expression of LanCL1 at both mRNA and protein levels. Overexpression of LanCL1 by lentivirus (LV-LanCL1) transfection preserved cell viability, reduced lactate dehydrogenase (LDH) release and attenuated apoptosis after OGD. These protective effects were accompanied by decreased protein radical formation, lipid peroxidation and mitochondrial dysfunction. In addition, LanCL1 significantly stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that LanCL1-induced activation of Sirt3 was dependent on Akt-PGC-1α pathway. Knockdown of PGC-1α expression using small interfering RNA (siRNA) or blocking Akt activation using specific antagonist partially prevented the protective effects of LanCL1 in HT22 cells. Taken together, our results show that LanCL1 protects against OGD through activating the Akt-PGC-1α-Sirt3 pathway, and may have potential therapeutic value for ischemic stroke.


Subject(s)
Cell Hypoxia/physiology , Mitochondria/metabolism , Oxidative Stress/physiology , Receptors, G-Protein-Coupled/metabolism , Sirtuin 3/metabolism , Apoptosis/physiology , Cell Survival/physiology , Gene Expression , Glucose/deficiency , HT29 Cells , Humans , Mitochondria/pathology , Neuroprotection/physiology , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Superoxide Dismutase/metabolism , Transfection
11.
Free Radic Biol Med ; 78: 123-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25463282

ABSTRACT

Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.


Subject(s)
Brain Diseases/drug therapy , Brain/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Sulfur/chemistry , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Brain/metabolism , Brain Diseases/metabolism , Cystathionine beta-Synthase/metabolism , Humans , Oxidation-Reduction , Sulfides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL