Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Fungi (Basel) ; 9(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36836256

ABSTRACT

Candida albicans is an opportunistic fungal pathogen that may cause invasive infections in immunocompromised patients, disseminating through the bloodstream to other organs. In the heart, the initial step prior to invasion is the adhesion of the fungus to endothelial cells. Being the fungal cell wall's outermost structure and the first to come in contact with host cells, it greatly modulates the interplay that later will derive in the colonization of the host tissue. In this work, we studied the functional contribution of N-linked and O-linked mannans of the cell wall of C. albicans to the interaction with the coronary endothelium. An isolated rat heart model was used to assess cardiac parameters related to vascular and inotropic effects in response to phenylephrine (Phe), acetylcholine (aCh) and angiotensin II (Ang II) when treatments consisting of: (1) live and heat-killed (HK) C. albicans wild-type yeasts; (2) live C. albicans pmr1Δ yeasts (displaying shorter N-linked and O-linked mannans); (3) live C. albicans without N-linked and O-linked mannans; and (4) isolated N-linked and O-linked mannans were administered to the heart. Our results showed that C. albicans WT alters heart coronary perfusion pressure (vascular effect) and left ventricular pressure (inotropic effect) parameters in response to Phe and Ang II but not aCh, and these effects can be reversed by mannose. Similar results were observed when isolated cell walls, live C. albicans without N-linked mannans or isolated O-linked mannans were perfused into the heart. In contrast, C. albicans HK, C. albicans pmr1Δ, C. albicans without O-linked mannans or isolated N-linked mannans were not able to alter the CPP and LVP in response to the same agonists. Taken together, our data suggest that C. albicans interaction occurs with specific receptors on coronary endothelium and that O-linked mannan contributes to a greater extent to this interaction. Further studies are necessary to elucidate why specific receptors preferentially interact with this fungal cell wall structure.

2.
Int J Biol Macromol ; 232: 123408, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36709813

ABSTRACT

Crotalus durissus snakebite represent 10 % of snakebite cases in Brazil, which cardiovascular disorders are associated with severe cases. Considering crotoxin (CTX) as the major venom component, the present study aimed to evaluate the hemodynamic alterations induced by CTX using in vivo and ex vivo approaches in a rat model. In vivo cardiac function parameters were analyzed from anesthetized rats treated with CTX or saline only (Sham), along with serum creatine kinase MB (CK-MB) and lung myeloperoxidase. From the same animals, hearts were isolated and functional parameters evaluated in Langendorff method ex vivo. CTX binding to myoblast cell line in vitro were evaluated using confocal microscopy and flow cytometry. CTX was capable of reducing arterial and diastolic blood pressure, heart rate, along with left ventricle pressure development or decay during systole (LVdP/dtmax and LVdP/dtmin) in vivo, however no differences were found in the ex vivo approach, showing that intrinsic heart function was preserved. In vitro, CTX binding to myoblast cell line was mitigated by hexamethonium, a nicotinic acetylcholine receptor antagonist. The present study has shown that CTX induce hemodynamic failure in rats, which can help improve the clinical management of cardiovascular alterations during Crotalus durissus snakebite.


Subject(s)
Crotoxin , Snake Bites , Rats , Animals , Crotoxin/pharmacology , Blood Pressure , Brazil
3.
Acta cir. bras. ; 36(2): e360207, 2021. graf, tab
Article in English | VETINDEX | ID: vti-30520

ABSTRACT

Purpose The present study explored the influence of liraglutide on remote preconditioning-mediated cardioprotection in diabetes mellitus along with the role of nuclear factor erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor (HIF-1) and hydrogen sulfide (H2S). Methods Streptozotocin was given to rats to induce diabetes mellitus and rats were kept for eight weeks. Four cycles of ischemia and reperfusion were given to hind limb to induce remote preconditioning. After 24 h, hearts were isolated and subjected to 30 min of ischemia and 120 min of reperfusion on Langendorff system. Liraglutide was administered along with remote preconditioning. Cardiac injury was assessed by measuring the release of creatine kinase (CK-MB), cardiac troponin (cTnT) and development of left ventricular developed pressure. After ischemia-reperfusion, hearts were homogenized to measure the nuclear cytoplasmic ratio of Nrf2, H2S and HIF-1 levels. Results In diabetic rats, there was more pronounced injury and the cardioprotective effects of remote preconditioning were not observed. Administration of liraglutide restored the cardioprotective effects of remote preconditioning in a dose-dependent manner. Moreover, liraglutide increased the Nrf2, H2S and HIF-1 levels in remote preconditioning-subjected diabetic rats. Conclusions Liraglutide restores the lost cardioprotective effects of remote preconditioning in diabetes by increasing the expression of Nrf2, H2S and HIF-1.(AU)


Subject(s)
Animals , Rats , Cardiotonic Agents , Diabetes Mellitus/veterinary , Hydrogen Sulfide , Reperfusion Injury/veterinary
4.
Acta cir. bras ; Acta cir. bras;36(2): e360207, 2021. tab, graf
Article in English | LILACS | ID: biblio-1152700

ABSTRACT

ABSTRACT Purpose The present study explored the influence of liraglutide on remote preconditioning-mediated cardioprotection in diabetes mellitus along with the role of nuclear factor erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor (HIF-1α) and hydrogen sulfide (H2S). Methods Streptozotocin was given to rats to induce diabetes mellitus and rats were kept for eight weeks. Four cycles of ischemia and reperfusion were given to hind limb to induce remote preconditioning. After 24 h, hearts were isolated and subjected to 30 min of ischemia and 120 min of reperfusion on Langendorff system. Liraglutide was administered along with remote preconditioning. Cardiac injury was assessed by measuring the release of creatine kinase (CK-MB), cardiac troponin (cTnT) and development of left ventricular developed pressure. After ischemia-reperfusion, hearts were homogenized to measure the nuclear cytoplasmic ratio of Nrf2, H2S and HIF-1α levels. Results In diabetic rats, there was more pronounced injury and the cardioprotective effects of remote preconditioning were not observed. Administration of liraglutide restored the cardioprotective effects of remote preconditioning in a dose-dependent manner. Moreover, liraglutide increased the Nrf2, H2S and HIF-1α levels in remote preconditioning-subjected diabetic rats. Conclusions Liraglutide restores the lost cardioprotective effects of remote preconditioning in diabetes by increasing the expression of Nrf2, H2S and HIF-1α.


Subject(s)
Animals , Rats , Myocardial Reperfusion Injury/prevention & control , Ischemic Preconditioning, Myocardial , Diabetes Mellitus, Experimental/drug therapy , Hydrogen Sulfide , Hydrogen Sulfide/pharmacology , Myocardial Infarction , Signal Transduction , Rats, Wistar , NF-E2-Related Factor 2 , Liraglutide/pharmacology
5.
Life Sci ; 256: 117920, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32522571

ABSTRACT

AIM: We investigated the effects of high-intensity interval and continuous short-term exercise on body composition and cardiac function after myocardial ischemia-reperfusion injury (IRI) in obese rats. METHODS: Rats fed with a standard chow diet (SC) or high-fat diet (HFD) for 20 weeks underwent systolic blood pressure (SBP), glycemia and dual-energy X-ray absorptiometry analyses. Then, animals fed with HFD were subdivided into three groups: sedentary (HFD-SED); moderate-intensity continuous training (HFD-MICT); and high-intensity interval training (HFD-HIIT). Exercised groups underwent four isocaloric aerobic exercise sessions, in which HFD-MICT maintained the intensity continuously and HFD-HIIT alternated it. After exercise sessions, all groups underwent global IRI and myocardial infarct size (IS) was determined histologically. Fat and muscle mass were weighted, and protein levels involved in muscle metabolism were assessed in skeletal muscle. RESULTS: HFD-fed versus SC-fed rats reduced lean body mass by 31% (P < 0.001), while SBP, glycemia and body fat percentage were increased by 10% (P = 0.04), 30% (P = 0.006) and 54% (P < 0.001); respectively. HFD-induced muscle atrophy was restored in exercised groups, as only HFD-SED presented lower gastrocnemius (32%; P = 0.001) and quadriceps mass (62%; P < 0.001) than SC. PGC1-α expression was 2.7-fold higher in HFD-HIIT versus HFD-SED (P = 0.04), whereas HFD-HIIT and HFD-MICT exhibited 1.7-fold increase in p-mTORSer2481 levels compared to HFD-SED (P = 0.04). Although no difference was detected among groups for IS (P = 0.30), only HFD-HIIT preserved left-ventricle developed pressure after IRI (+0.7 mmHg; P = 0.9). SIGNIFICANCE: Short-term exercise, continuous or HIIT, restored HFD-induced muscle atrophy and increased mTOR expression, but only HIIT maintained myocardial contractility following IRI in obese animals.


Subject(s)
Body Composition/physiology , Myocardium/metabolism , Animals , Blood Glucose/metabolism , Blood Pressure , Diet, High-Fat , Gene Expression Regulation , Heart Function Tests , High-Intensity Interval Training , Humans , Longitudinal Studies , Male , Models, Animal , Muscle, Skeletal/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/etiology , Obesity/etiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , Rats , Rats, Wistar , Sarcopenia/etiology
6.
J Mol Cell Cardiol ; 134: 40-50, 2019 09.
Article in English | MEDLINE | ID: mdl-31226341

ABSTRACT

Although nitrite improves vascular function and lowers blood pressure, its cardiac effects are not completely known. We investigated whether nitrite improves the cardiac function in normotensive and in hypertensive rats. Two-kidney, one-clip hypertension model (2K1C) was induced in Wistar rats. Blood pressure was evaluated by tail-cuff plethysmography over 6 weeks. By the end of week 2, hypertensive and normotensive rats received nitrite (daily dose of 1 or 15 mg/kg) by gavage for 4 weeks. Cardiac morphology and function were performed by transthoracic echocardiography. Intrinsic heart function was evaluated using the isolated heart model (Langendorff's preparation). Starling curves were generated under nitrite (1 µmol/L) and/or ascorbate (1 mmol/L) or vehicle. Cardiac tissue was collected and snap frozen for biochemical analysis. Nitrite treatment (15 mg/kg) lowered both systolic blood pressure and the increases in left ventricular (LV) mass found in 2K1C rats (P < .05). In addition, nitrite treatment restored the decreased cardiac output in 2K1C rats (P < .05) and improved the cardiac function. These findings were associated with increased nitrite, S-nitrosothiols, and protein S-nitrosylation (all P < .05) assessed in heart tissue. The cardiac effects of nitrite were further investigated in the isolated heart model, and nitrite infusion (1 µmol/L) enhanced cardiac contractility and relaxation. This infusion increased S-nitrosothiols concentrations and protein S-nitrosylation in the heart. Ascorbate completely blunted all nitrite-induced effects. These findings show that treatment with oral nitrite improves cardiac function by mechanisms involving increased S-nitrosothiols generation and S-nitrosylation of cardiac proteins. Pharmacological strategies promoting cardiac S-nitrosylation may be useful to improve myocardial function in heart diseases.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/prevention & control , Hypertension/complications , Myocardium/metabolism , Nitrates/metabolism , Sodium Nitrite/pharmacology , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Cardiomyopathies/metabolism , Heart/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Male , Myocardium/pathology , Nitrosation/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sodium Nitrite/therapeutic use
7.
BMC Cardiovasc Disord ; 19(1): 126, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138145

ABSTRACT

BACKGROUND: Information on the role of intermittent fasting (IF) on pathologic cardiac remodeling is scarce. We compared the effects of IF before and after myocardial infarction (MI) on rat cardiac remodeling and survival. METHODS: Wistar rats were intermittently fasted (food available every other day) or fed ad libitum for 12 weeks and then divided into three groups: AL - fed ad libitum; AL/IF - fed AL before MI and IF after MI; and IF - fed IF before and after MI. Echocardiogram was performed before MI and 2 and 12 weeks after surgery. Isolated hearts were evaluated in Langendorff preparations. RESULTS: Before surgery, body weight (BW) was lower in IF than AL. Final BW was lower in AL/IF and IF than AL. Perioperative mortality did not change between AL (31.3%) and IF (27.3%). Total mortality was lower in IF than AL. Before surgery, echocardiographic parameters did not differ between groups. Two weeks after surgery, MI size did not differ between groups. Twelve weeks after MI, left ventricular (LV) diastolic posterior wall thickness was lower in AL/IF and IF than AL. The percentage of variation of echocardiographic parameters between twelve and two weeks showed that MI size decreased in all groups and the reduction was higher in IF than AL/IF. In Langendorff preparations, LV volume at zero end-diastolic pressure (V0; AL: 0.41 ± 0.05; AL/IF: 0.34 ± 0.06; IF: 0.28 ± 0.05 mL) and at 25 mmHg end-diastolic pressure (V25; AL: 0.61 ± 0.05; AL/IF: 0.54 ± 0.07; IF: 0.44 ± 0.06 mL) was lower in AL/IF and IF than AL and V25 was lower in IF than AL/IF. V0/BW ratio was lower in IF than AL and LV weight/V0 ratio was higher in IF than AL. Myocyte diameter was lower in AL/IF and IF than AL (AL: 17.3 ± 1.70; AL/IF: 15.1 ± 2.21; IF: 13.4 ± 1.49 µm). Myocardial hydroxyproline concentration and gene expression of ANP, Serca 2a, and α- and ß-myosin heavy chain did not differ between groups. CONCLUSION: Intermittent fasting initiated before or after MI reduces myocyte hypertrophy and LV dilation. Myocardial fibrosis and fetal gene expression are not modulated by feeding regimens. Benefit is more evident when intermittent fasting is initiated before rather than after MI.


Subject(s)
Caloric Restriction , Fasting , Myocardial Infarction/diet therapy , Ventricular Function, Left , Ventricular Remodeling , Animals , Disease Models, Animal , Fibrosis , Isolated Heart Preparation , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocardium/pathology , Rats, Wistar , Time Factors , Weight Loss
8.
Motriz (Online) ; 23(spe): e101620, 2017. tab, graf
Article in English | LILACS | ID: biblio-841861

ABSTRACT

Abstract AIM To compare the amount of cardioprotection induced by a single exercise session with those achieved after an 8-week aerobic exercise training following ischemia reperfusion injury in rats. METHODS Twenty-five male Wistar rats (250-300g) were assigned into a group submitted to physical training (TR; n=12) or a single maximal exercise session (EXE; n=13). Following sedentarism or physical training (8 weeks, 5 sessions/wk, 1h/session at 70% of maximal speed) both groups performed a maximal exercise test. Then, groups were submitted to ischemia reperfusion injury (30 min/1h) through an isolated heart protocol, in which left ventricle developed pressure was measured. RESULTS The TR group presented greater maximal oxygen consumption compared to the EXE group (77.25±20.41 vs 41.32±25.86 ml/Kg/min; P=0.003). Regarding left ventricle developed pressure, no differences were detected between groups at baseline (TR: 89.78±24.40 vs EXE: 81.37±31.84 mmHg; P=0.48). However, after reperfusion, the TR group presented superior intraventricular pressure than EXE group (37.94±18.34 vs 21.59±13.67 mmHg; P=0.03). CONCLUSION Eight-week aerobic training induced greater cardioprotection against ischemia reperfusion injury in rats compared to a single exercise session, due to an increased cardiac function. This suggests that exercise-induced cardioprotection is a multifactorial process that may involve different mediators according to the exercise duration.(AU)


Subject(s)
Animals , Male , Rats , Exercise , Myocardial Reperfusion Injury/chemically induced , Rats, Wistar
9.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;45(12): 1248-1254, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-659638

ABSTRACT

Little is known about age-related differences in short-term effects of estradiol on ischemia-reperfusion (I/R) insults. The present study was designed to evaluate the effects of short-term treatment with estradiol on reperfusion arrhythmias in isolated hearts of 6-7-week-old and 12-14-month-old female rats. Wistar rats were sham-operated, ovariectomized and treated with vehicle or ovariectomized and treated with 17β-estradiol (E2; 5 µg·100 g-1·day-1) for 4 days. Hearts were perfused by the Langendorff technique. Reperfusion arrhythmias, i.e., ventricular tachycardia and/or ventricular fibrillation, were induced by 15 min of left coronary artery ligation and 30 min of reperfusion. The duration and incidence of I/R arrhythmias were significantly higher in young rats compared to middle-aged rats (arrhythmia severity index: 9.4 ± 1.0 vs 3.0 ± 0.3 arbitrary units, respectively, P < 0.05). In addition, middle-aged rats showed lower heart rate, systolic tension and coronary flow. Four-day E2 treatment caused an increase in uterine weight. Although E2 administration had no significant effect on the duration of I/R arrhythmias in middle-aged rats, it induced a marked reduction in the rhythm disturbances of young rats accompanied by a decrease in heart rate of isolated hearts. Also, this reduction was associated with an increase in QT interval. No significant changes were observed in the QT interval of middle-aged E2-treated rats. These data demonstrate that short-term estradiol treatment protects against I/R arrhythmias in hearts of young female rats. The anti-arrhythmogenic effect of estradiol might be related to a lengthening of the QT interval.


Subject(s)
Animals , Female , Arrhythmias, Cardiac/prevention & control , Estradiol/pharmacology , Myocardial Reperfusion Injury/physiopathology , Age Factors , Arrhythmias, Cardiac/physiopathology , Coronary Circulation/drug effects , Coronary Circulation/physiology , Electrocardiography , Estradiol/administration & dosage , Ovariectomy , Rats, Wistar , Ventricular Function, Left/drug effects
10.
Acta bioquím. clín. latinoam ; Acta bioquím. clín. latinoam;44(1): 37-45, ene.-mar. 2010. graf
Article in Spanish | LILACS | ID: lil-633107

ABSTRACT

Estudios clínicos y epidemiológicos sugieren que el danazol ha sido considerado como un factor de riesgo para desarrollar hipertensión. Para proporcionar información adicional acerca de este fenómeno, en este trabajo fue caracterizado el efecto inducido por el danazol y el hemisuccinato de danazol sobre la presión de perfusión y la resistencia vascular en corazón aislado de rata a flujo constante (modelo de Langendorff). Los resultados, mostraron que; 1) el hemisuccinato de danazol [10-9 M] incrementa la presión de perfusión en comparación con el danazol [10-9 M]; 2) los efectos del derivado de danazol [10-9 M - 10-4 M] sobre la presión de perfusión fueron inhibidos por flutamida [10-6 M]; 3) la nifedipina [10-6 M], bloqueó los efectos ejercidos por el hemisuccinato de danazol [10-9 M -10-4 M] sobre la presión de perfusión y 4) el efecto del derivado de danazol [10-9 M - 10-4 M] sobre la presión de perfusión en presencia del montelukast [10-6 M] fue inhibido significativamente (p=0,008). En conclusión, los efectos inducidos por el danazol y hemisuccinato de danazol sobre la presión de perfusión y la resistencia vascular podrían depender de su estructura química. Este fenómeno podría involucrar la interacción del receptor de andrógenos e indirectamente la activación de la síntesis de leucotrienos D4 (LTD4) y consecuentemente inducir variaciones en la presión de perfusión.


Epidemiological and clinical studies suggest that danazol has been considered a risk factor for hypertension development. In order to provide additional information about this phenomenon, the effect induced by both danazol and hemisuccinate of danazol on perfusion pressure and vascular resistance was characterized in isolated rat heart at constant flow (Langendorff model) and it was evaluated in this work.The results showed that; 1) hemisuccinate of danazol [10-9 M] increases perfusion pressure and vascular resistance in comparison with danazol [10-9 M]; 2) the effects of danazol-derivative [10-9 M - 10-4 M] on perfusion pressure were inhibited by flutamide [10-6 M]; 3) nifedipine [10-6 M] blockaded the effects exerted by hemisuccinate of danazol [10-9 M -10-4 M] on perfusion pressure; and 4) the effect of danazol-derivative [10-9 M - 10-4 M] on perfusion pressure in presence of montelukast [10-6 M] was significantly inhibited (p=0.008). In conclusion, the effects induced by both danazol and hemisuccinate of danazol on perfusion pressure and vascular resistance could depend on their chemical structure. This phenomenon could involve the interaction of androgene steroid-receptor and indirect activation of leukotriene D4 (LTD4) synthesis and consequently, induce variations in the perfusion pressure.


Subject(s)
Animals , Rats , Methylprednisolone Hemisuccinate/pharmacology , Danazol/adverse effects , Danazol/pharmacology , Vascular Resistance/drug effects , Coronary Vessels/drug effects , Danazol/analysis , Isolated Heart Preparation
SELECTION OF CITATIONS
SEARCH DETAIL