Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 15: 1411952, 2024.
Article in English | MEDLINE | ID: mdl-39104848

ABSTRACT

The use of exotic grasses of African origin for pastures in Brazil has been a major advancement in livestock production, but little is known about the responses of these grasses to nitrogen fertilizers associated with shading. In this study, the morphogenetic, structural, and leaf anatomical characteristics of Megathyrsus maximus cultivars' Tamani and Quênia were investigated as a function of N dose and shade. Morphogenetic and structural characteristics and leaf anatomy were studied under three shading levels (0, 30, and 50 %) and four N doses (0, 100, 200, and 300 kg N ha-1) to simulate growth in a silvopastoral system. When comparing the cultivars, Quênia was more efficient in terms of phyllochron up to fertilization with 100 kg N ha-1. The leaf senescence rate of Tamani was higher than that of Quênia at the 30 and 50 % shade levels. The total area (TA) occupied by leaf tissues decreased in Quênia as a function of the increase in N fertilization, whereas the TA of Tamani did not change. The thickness of the adaxial epidermis was greater in Quênia (0.68 µm) than in Tamani (0.50 µm) when not fertilized. The area occupied by the mesophyll was greater in both cultivars when they received fertilization equivalent to 300 kg N ha-1. Quênia grass has a smaller phyllochron than Tamani grass, due to the rapid reconstruction of its photosynthetic apparatus, especially when it receives higher levels of nitrogen fertilization. However, Tamani grass has a greater distribution of plant tissues. The mesophyll area is larger in Tamani grass due to the greater presence of chloroplasts, which facilitates digestion by animals. The Tamani modified the leaf anatomical tissues more significantly in relation to shading, whereas the Quênia modified them in relation to N fertilization, which reinforces the suggestion of a more appropriate use of Tamani in silvopastoral systems.

2.
J Plant Res ; 137(1): 49-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37962735

ABSTRACT

Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.


Subject(s)
Trees , Water , Trees/physiology , Droughts , Tropical Climate , Forests , Plant Leaves/physiology
3.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469314

ABSTRACT

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.


Resumo A verificação de mudanças morfológicas e fisiológicas sob diferentes condições luminosas em espécies frutíferas nativas em estágio juvenil é importante, uma vez que indicam o ambiente adequado para a formação de mudas com alto vigor. Objetivou-se verificar o crescimento e as alterações morfofisiológicas sob gradiente de sombreamento em mudas de feijoa (Acca sellowiana (O. Berg) Burret) para obter mudas de boa qualidade, adequadas para fomentar os plantios da espécie em pomares. As mudas foram cultivadas por vinte e um meses sob quatro tratamentos de sombreamento (0%, 30%, 50% e 80%). Foram avaliados parâmetros de crescimento, pigmentos fotossintéticos, trocas gasosas, fluorescência da clorofila e anatomia foliar. Mudas a pleno sol e 30% de sombra apresentaram maior crescimento em altura, diâmetro e acúmulo de massa seca, devido à maior taxa de fotossíntese. Como principais mecanismos de aclimatação sob 80% de sombra, as mudas desenvolveram maior área foliar, redução da espessura do limbo foliar e aumento do rendimento quântico do fotossistema II. Mesmo assim, a assimilação líquida de CO2 e a taxa de transporte de elétrons foram menores e, consequentemente, houve restrição ao crescimento e acúmulo de massa seca das mudas no maior nível de sombreamento. Portanto, para a obtenção de mudas de feijoa de maior qualidade, recomendamos que seja realizada a pleno sol ou até 30% de sombra, para maximizar o vigor das mudas em viveiros e, posteriormente, este ambiente de luz também pode ser utilizado em pomares para favorecer o crescimento e a produção de frutos.

4.
Braz. j. biol ; 84: e252364, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1355885

ABSTRACT

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles' stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.


Resumo A verificação de mudanças morfológicas e fisiológicas sob diferentes condições luminosas em espécies frutíferas nativas em estágio juvenil é importante, uma vez que indicam o ambiente adequado para a formação de mudas com alto vigor. Objetivou-se verificar o crescimento e as alterações morfofisiológicas sob gradiente de sombreamento em mudas de feijoa (Acca sellowiana (O. Berg) Burret) para obter mudas de boa qualidade, adequadas para fomentar os plantios da espécie em pomares. As mudas foram cultivadas por vinte e um meses sob quatro tratamentos de sombreamento (0%, 30%, 50% e 80%). Foram avaliados parâmetros de crescimento, pigmentos fotossintéticos, trocas gasosas, fluorescência da clorofila e anatomia foliar. Mudas a pleno sol e 30% de sombra apresentaram maior crescimento em altura, diâmetro e acúmulo de massa seca, devido à maior taxa de fotossíntese. Como principais mecanismos de aclimatação sob 80% de sombra, as mudas desenvolveram maior área foliar, redução da espessura do limbo foliar e aumento do rendimento quântico do fotossistema II. Mesmo assim, a assimilação líquida de CO2 e a taxa de transporte de elétrons foram menores e, consequentemente, houve restrição ao crescimento e acúmulo de massa seca das mudas no maior nível de sombreamento. Portanto, para a obtenção de mudas de feijoa de maior qualidade, recomendamos que seja realizada a pleno sol ou até 30% de sombra, para maximizar o vigor das mudas em viveiros e, posteriormente, este ambiente de luz também pode ser utilizado em pomares para favorecer o crescimento e a produção de frutos.


Subject(s)
Myrtaceae , Feijoa , Photosynthesis , Plant Leaves , Acclimatization , Light
5.
Microsc Res Tech ; 86(9): 1177-1196, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37486152

ABSTRACT

Morphoanatomical studies can provide useful and relevant information to support taxonomic groupings. Jacquemontia evolvuloides shows great morphological variability, which has led to numerous taxonomic classifications. To determine if anatomical characters can be used to recognize operational taxonomic units within populations of that species, we analyzed the leaves and stems of 22 populations using light and scanning electron microscopy. The variability of the analyzed characters allowed the grouping of these populations into five morphotypes. The presence of paracytic stomata, laticiferous canals, and stellate trichomes can be considered diagnostic characters of J. evolvuloides. The presence and types of epicuticular waxes, as well as a layer similar to palisade parenchyma in the petioles and stems, the classifications of glandular trichomes, and new types of stomata (anomocytic, anomotetracytic, and brachyparatetracytic) are reported here for the first time for Jacquemontia. The results discussed here help clarify the classification of this species complex and contribute to the taxonomy of Jacquemontia-a genus that has historically been difficult to define due to its wide morphological variation at the species level. RESEARCH HIGHLIGHTS: Seven types of epicuticular waxes were identified among J. evolvuloides specimens: granules, threads, entire platelets, coiled rodlets, fissured layers, membranous platelets, and tubules. Six types of trichomes were observed among J. evolvuloides populations: stellate, malpighiaceous, sessile peltate glandular, short pedunculate glandular, stipitate-glandular, and capitate glandular. We observed that six populations of Jacquemontia evolvuloides located in the Brazilian Caatinga domain have unprecedented sessile peltate trichomes restricted to the main leaf midrib, which were only observed under light microscopy.


Subject(s)
Convolvulaceae , Microscopy, Electron, Scanning , Plant Leaves/anatomy & histology , Trichomes/anatomy & histology , Waxes
6.
Planta ; 258(1): 18, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37314591

ABSTRACT

MAIN CONCLUSION: Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits. We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.


Subject(s)
Asteraceae , Domestication , Ecosystem , Mesophyll Cells , Phenotype
7.
AoB Plants ; 15(3): plad018, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37214224

ABSTRACT

Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.

8.
Plant Physiol Biochem ; 194: 193-201, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36427381

ABSTRACT

Increasing CO2 air concentration may affect wettability, anatomy and ultra-structure of leaves of Patagonian forest species, evergreen and deciduous plants potentially responding differently to such CO2 increases. In this study, we analysed the wettability, anatomy and ultra-structure of leaves of Nothofagus antarctica (deciduous) and N. betuloides (evergreen) grown under high CO2 concentrations. Leaf wettability was affected by increasing CO2, in different directions depending on species and leaf side. In both species, soluble cuticular lipid concentrations per unit leaf area raised with higher CO2 levels. Stomatal parameters (density, size of guard cells and pores) showed different responses to CO2 increasing depending on the species examined. In both species, leaf tissues showed a general trend to diminish with higher CO2 concentration. Cuticle thickness was modified with higher CO2 concentration in N. betuloides, but not in N. antarctica leaves. In both species, chloroplasts were often damaged with the increase in CO2 concentration. Our results show that several surface and internal leaf parameters can be modified in association with an increase in atmospheric CO2 concentration which may very among plant species.


Subject(s)
Carbon Dioxide , Plant Leaves , Carbon Dioxide/analysis , Antarctic Regions , Wettability , Plant Leaves/physiology , Atmosphere
9.
Plants (Basel) ; 11(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807675

ABSTRACT

Semi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation known as resource islands that are generated by nurse species that delay the desertification process because they increase the availability of water and nutrients in the soil. The study aimed to characterize some foliar physiological, biochemical, and anatomical traits of three nurse tree species that form resource islands in the semi-arid environment of La Guajira, Colombia, i.e., Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. The results showed that H. brasiletto and P. dulce have sclerophyllous strategies, are thin (0.2 and 0.23 mm, respectively), and have a high leaf dry matter content (364.8 and 437.47 mg/g). Moreover, both species have a high photochemical performance, reaching Fv/Fm values of 0.84 and 0.82 and PIABS values of 5.84 and 4.42, respectively. These results agree with the OJIP curves and JIP parameters. Both species had a compact leaf with a similar dorsiventral mesophyll. On the other hand, P. guamacho has a typical succulent, equifacial leaf with a 97.78% relative water content and 0.81 mm thickness. This species had the lowest Fv/Fm (0.73) and PIABS (1.16) values and OJIP curve but had the highest energy dissipation value (DIo/RC).

10.
Protoplasma ; 259(4): 1081-1097, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34755230

ABSTRACT

This work aimed to evaluate the effects of lower water levels on leaf intercellular spaces and to assess their relations with the gas exchange, anatomy, and growth of Sorghum bicolor. Experiments were conducted in a greenhouse, in which plants were subjected to three water conditions (ten replicates, n = 30): well-irrigated, decreased irrigation, and limited irrigation. Lower water levels had no significant effect on the growth of S. bicolor but increased the biomass of the roots. Moreover, the number of leaves, leaf area, and leaf size as well as the chlorophyll content were not affected by lower water levels, and no significant changes were detected for whole plant photosynthesis, transpiration, or stomatal conductance. The water content of the plants and the water potential remained unchanged. However, compared with other treatments, the decreased irrigation decreased water loss and increased the water retention. Lower water levels increased the intercellular CO2 percentage, mesophyll area, and proportion of stomatal cavities and promoted minor changes in leaf tissue and stomatal traits. The increased stomatal cavities provided higher CO2 uptake and prevented excessive water loss. Thus, modifications to the intercellular spaces promoted conditions to avoid excessive water loss while concurrently improving CO2 uptake, which are important traits for drought-tolerant plants.


Subject(s)
Sorghum , Carbon Dioxide/pharmacology , Photosynthesis , Plant Leaves , Plant Transpiration , Water
11.
Ecotoxicology ; 31(1): 168-177, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34773558

ABSTRACT

The objective was to evaluate the effect of the glyphosate on Hymenaea courbaril L. A randomized block design with five replications was implemented. Each experimental unit was composed of one plant in a 5 L container. The treatments were 0 "control"; 96; 240; 480; and 960 g ha-1 "corresponding to 10, 25, 50, and 100% of the commercial dose of glyphosate recommended for Caryocar brasiliense crop, respectively". The evaluations were performed at 24 h and 60 days after application. Visual and anatomical evaluations did not change regardless of the dose, while the histochemical evaluation showed an accumulation of starch grains in leaf tissues. There was an increase in the photosynthetic rate, in the electron transport rate, and in the effective quantum yield of photosystem II at 24 h after application. At 60 days after the application of the treatments, the photosynthetic rate showed a slight decrease and the transpiratory rate showed quadratic behavior. An increase in plant height was observed up to the dose of 480 g ha-1, a linear increase in stem diameter and a decrease in the number of leaves with increasing glyphosate doses. These results show that the cuticle protected the plant, and that the little absorbed glyphosate increased photosynthesis and transpiration to favor the plants. We can conclude that the H. courbaril species is able to survive after contact with glyphosate during the evaluated time, with no visual and/or anatomical damage, showing increases in growth and physiological characteristics for the tested doses.


Subject(s)
Glycine , Hymenaea , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Photosynthesis , Glyphosate
12.
Semina Ci. agr. ; 42(05): 2717-2734, set.-out. 2021. tab, graf
Article in English | VETINDEX | ID: vti-31768

ABSTRACT

Knowledge of the expression of traits associated with drought tolerance is important to mitigate impacts on coffee production in a climate change scenario. This study aimed to understand the genetic divergence between Coffea canephora genotypes grown in the Western Amazon based on leaf vegetative and anatomical traits. For this, fifteen high-performance genotypes were evaluated in a randomized block design with five replications of one plant per plot to analyze three leaf vegetative traits (leaf area index, root volume, and total dry mass) and five leaf anatomical traits (polar and equatorial diameter, density and number of stomata, and stomatal area). The data were interpreted using analysis of variance and the Scott-Knott mean cluster test (p ≤ 0.05). The Tocher optimization method and principal component analysis with reference points were used to quantify the genetic divergence. Tocher clustering separated the fifteen clones into five groups, and the scatter in the plane into three groups. Stomatal density was the trait that most contributed to the dissimilarity between genotypes with the potential to be used in future studies for the selection of water deficit-tolerant genotypes. The BRS 3213 genotype showed the greatest genetic dissimilarity and composed a group isolated from the other genotypes in terms of anatomical characteristics. Hybrids 12 and 15 have leaf anatomical traits with higher drought tolerance potential.(AU)


O conhecimento da expressão de características associadas a tolerância a seca é importante para mitigar os impactos na produção cafeeira em um cenário de mudanças climáticas. Objetivou-se com o presente trabalho entender a divergência de natureza genética entre genótipos de Coffea canephora cultivados na Amazônia Ocidental, com base em características vegetativas e anatômicas foliares. Para isso, quinze genótipos foram avaliados em delineamento de blocos casualizados com cinco repetições de uma planta por parcela, para análise de três características vegetativas (área foliar, volume de raiz, massa seca total) e cinco características anatômicas foliares (diâmetro polar e equatorial; densidade e número de estômatose área estomática). Os dados foram interpretados utilizando análise de variância e o teste de Scott-Knott (p ≤ 0,05). Para quantificar a divergência genética foi interpretado o agrupamento estimado pelo método de otimização de Tocher e a dispersão no plano obtida utilizando a técnica de componentes principais. O agrupamento de Tocher separou os 15 clones em cinco grupos, e a dispersão no plano em três grupos. A densidade estomática foi a característica que mais contribuiu para a dissimilaridade entre os genótipos com potencial para ser utilizada em estudos futuros de seleção de genótipos tolerantes ao déficit hídrico. O genótipo BRS 3213 apresentou maior dissimilaridade genética, constituindo um grupo isolado dos demais genótipos quanto as características anatômicas. Os Híbridos 12 e 15 apresentam características anatômicas foliares com maior potencial de tolerância a seca.(AU)


Subject(s)
Coffea/anatomy & histology , Coffea/genetics
13.
Semina ciênc. agrar ; 42(05): 2717-2734, set.-out. 2021. tab, graf
Article in English | VETINDEX | ID: biblio-1501868

ABSTRACT

Knowledge of the expression of traits associated with drought tolerance is important to mitigate impacts on coffee production in a climate change scenario. This study aimed to understand the genetic divergence between Coffea canephora genotypes grown in the Western Amazon based on leaf vegetative and anatomical traits. For this, fifteen high-performance genotypes were evaluated in a randomized block design with five replications of one plant per plot to analyze three leaf vegetative traits (leaf area index, root volume, and total dry mass) and five leaf anatomical traits (polar and equatorial diameter, density and number of stomata, and stomatal area). The data were interpreted using analysis of variance and the Scott-Knott mean cluster test (p ≤ 0.05). The Tocher optimization method and principal component analysis with reference points were used to quantify the genetic divergence. Tocher clustering separated the fifteen clones into five groups, and the scatter in the plane into three groups. Stomatal density was the trait that most contributed to the dissimilarity between genotypes with the potential to be used in future studies for the selection of water deficit-tolerant genotypes. The BRS 3213 genotype showed the greatest genetic dissimilarity and composed a group isolated from the other genotypes in terms of anatomical characteristics. Hybrids 12 and 15 have leaf anatomical traits with higher drought tolerance potential.


O conhecimento da expressão de características associadas a tolerância a seca é importante para mitigar os impactos na produção cafeeira em um cenário de mudanças climáticas. Objetivou-se com o presente trabalho entender a divergência de natureza genética entre genótipos de Coffea canephora cultivados na Amazônia Ocidental, com base em características vegetativas e anatômicas foliares. Para isso, quinze genótipos foram avaliados em delineamento de blocos casualizados com cinco repetições de uma planta por parcela, para análise de três características vegetativas (área foliar, volume de raiz, massa seca total) e cinco características anatômicas foliares (diâmetro polar e equatorial; densidade e número de estômatose área estomática). Os dados foram interpretados utilizando análise de variância e o teste de Scott-Knott (p ≤ 0,05). Para quantificar a divergência genética foi interpretado o agrupamento estimado pelo método de otimização de Tocher e a dispersão no plano obtida utilizando a técnica de componentes principais. O agrupamento de Tocher separou os 15 clones em cinco grupos, e a dispersão no plano em três grupos. A densidade estomática foi a característica que mais contribuiu para a dissimilaridade entre os genótipos com potencial para ser utilizada em estudos futuros de seleção de genótipos tolerantes ao déficit hídrico. O genótipo BRS 3213 apresentou maior dissimilaridade genética, constituindo um grupo isolado dos demais genótipos quanto as características anatômicas. Os Híbridos 12 e 15 apresentam características anatômicas foliares com maior potencial de tolerância a seca.


Subject(s)
Coffea/anatomy & histology , Coffea/genetics
15.
Plants (Basel) ; 10(4)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800618

ABSTRACT

Despite the negative impacts of increased ultraviolet radiation intensity on plants, these organisms continue to grow and produce under the increased environmental UV levels. We hypothesized that ambient UV intensity can generate acclimations in plant growth, leaf morphology, and photochemical functioning in modern genotypes of Coffea arabica and C. canephora. Coffee plants were cultivated for ca. six months in a mini greenhouse under either near ambient (UVam) or reduced (UVre) ultraviolet regimes. At the plant scale, C. canephora was substantially more impacted by UVam when compared to C. arabica, investing more carbon in all juvenile plant components than under UVre. When subjected to UVam, both species showed anatomic adjustments at the leaf scale, such as increases in stomatal density in C. canephora, at the abaxial and adaxial cuticles in both species, and abaxial epidermal thickening in C. arabica, although without apparent impact on the thickness of palisade and spongy parenchyma. Surprisingly, C. arabica showed more efficient energy dissipation mechanism under UVam than C. canephora. UVam promoted elevated protective carotenoid content and a greater use of energy through photochemistry in both species, as reflected in the photochemical quenching increases. This was associated with an altered chlorophyll a/b ratio (significantly only in C. arabica) that likely promoted a greater capability to light energy capture. Therefore, UV levels promoted different modifications between the two Coffea sp. regarding plant biomass production and leaf morphology, including a few photochemical differences between species, suggesting that modifications at plant and leaf scale acted as an acclimation response to actual UV intensity.

16.
Acta biol. colomb ; 26(1): 12-18, ene.-abr. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1152664

ABSTRACT

ABSTRACT Leaf anatomy characteristics provide important evidences about the transition between C3 and C4 pathways. The C4 photosynthesis pathway allowed to reduce the C3 photorespiratory rate, concentrating CO2 around the Rubisco site and using structures and machinery already presented in C3 plants. In monocots, it is observed a high number of C4 lineages, most of them phylogenetically related to C3 groups. The genus Apochloa (C3), subtribe Arthropogoninae, is related to two C4 genera Coleataenia and Cyphonanthus. The aim of this study was to evaluate four Apochloa species in order to establish anatomical characteristics related to the evolution of C4 pathway in this group. By means of transverse sections fully expanded leaves of A. euprepes, A. lorea, A. molinioides, and A. poliophylla were collected and the characteristics of the mesophyll (M) and bundle sheath (BS) cells were determined. These species showed a rustic Kranz anatomy with enlarged and radial arranged BS cells, which have few organelles organized in a centrifugal position. Although the modifications of BS cells are probably related to the maintenance of plant water status, we also discuss the evolution for the establishment of C4 photosynthesis in the related C4 genera.


RESUMEN Las características de la anatomía de la hoja proporcionan evidencias importantes sobre la transición entre las vías C3 y C4. La fotosíntesis C4 surgió para reducir la tasa de fotorrespiración C3, concentrando el CO2 alrededor del sitio de la Rubisco y utilizando estructuras y maquinaria ya presentes en las plantas C3. En monocotiledóneas, se observa un alto número de linajes C4, la mayoría de ellas filogenéticamente relacionadas con grupos C3. El género C3 Apochloa, que pertenece a la subtribu Arthropogoninae, está relacionado con dos géneros C4 Coleataenia and Cyphonanthus. En este contexto, el objetivo fue evaluar cuatro especies de Apochloa para establecer las características anatómicas relacionadas con la evolución de la via C4 en este grupo. Se colectaron hojas completamente expandidas de A. euprepes, A. lorea, A. molinioides y A. poliophylla y se determinaron las características de las células del mesófilo (M) y del haz de la vaina (HV) a partir de secciones transversales de la hoja. Las especies presentaron una anatomía rústica de Kranz con células HV agrandadas y de distribución radial, con pocas organelas organizadas en posición centrífuga. Aunque las modificaciones de las células HV están probablemente relacionadas con el mantenimiento del estado hídrico de la planta, se puede inferir que facilitan el establecimiento de la fotosíntesis en los géneros C4 relacionados.

17.
J Plant Res ; 134(3): 535-541, 2021 May.
Article in English | MEDLINE | ID: mdl-33721128

ABSTRACT

Plant cell and tissue responses to the attack of mining herbivores may be diagnosed by anatomical and histochemical analyses, herein investigated regarding the mining activity of Phyllocnistis hemera larvae in the leaf lamina of Daphnopsis fasciculata. The larva enters the leaf lamina through the adaxial epidermis, and feeds on palisade parenchyma cells. A healing tissue is produced after the larva passes, and its cells are reactive to histochemical tests for lignins and pectins. At first, the leaf mine is composed of a channel that is limited by palisade parenchyma cell wall fragments. Later, it is filled with a regenerative tissue constituted by isodiametric cells recruited from the spongy parenchyma, which fills up the mine channel. The cells differentiated inside the mine, regenerated the damage caused to leaf tissues, and may isolate the mine from the entrance of pathogens. Daphnopsis fasciculata is capable of reconstructing mesophyll tissues, which involves the totipotency of parenchyma cells and enables an important strategy for plant recovering after the attack of mining parasites.


Subject(s)
Lepidoptera , Thymelaeaceae , Animals , Habits , Herbivory , Larva , Plant Leaves
18.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200618, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1350255

ABSTRACT

Abstract Bauhinia monandra Kurz (Fabaceae) is an ornamental leguminous tree from Africa. Its leaf has been proven to be hypoglycaemic, and are a source of lecithin BmoLL, providing this species with great medicinal potential. Curiously, there are no reports of the anatomical description of the leaf of this species. The present work aimed at describing the leaf anatomy of B. monandra, and make histochemical inferences. To this end, anatomical procedures in light and scanning electron microscopy were performed from different parts of the leaves of plants growing in the state of Bahia, Brazil. The leaf is amphistomatous. It possesses papillate epidermis, nonglandular and navicular trichomes, and the mesophyll is dorsiventral. The central vein is distinct from the others of the first degree. The first, second, and third-degree veins possess thick fibre bundles with associated monocrystals. The other veins are a little fibrous and excessively reduced. The petiole vascularisation consists of circularly arranged collateral bundles, plus two accessory bundles. The pulvinus have a wide parenchymatic cortex with abundant druses and vascularisation restricted to the central region, surrounded by a crystalline sheath and by a starch sheath. The motile cushion has the vascular bundles arranged in series. Associated with the phloem from the pulvinus vascular bundles and the motile apparatus, occur non-lignified septate fibres that confer flexibility to these organs. The absence of lateral projections and the arrangement of vascular bundles in the petiole was the most distinctive anatomical features and of the greatest taxonomic potential observed in the leaf of B. monandra.

19.
Biota Neotrop. (Online, Ed. ingl.) ; 21(3): e20201187, 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1278416

ABSTRACT

Abstract: The Sapotaceae family is recognized for its economic importance, presenting food, medicinal and timber potential. Pouteria andarahiensis T.D.Penn., popularly known as "massaranduba", is endemic to Chapada Diamantina, Bahia, Brazil, and is currently classified on the IUCN red list as "endangered". Pouteria andarahiensis is little studied, highlighting this work as the first anatomical study for the species. Light microscopy and scanning electron microscopy techniques were used to perform anatomical studies. The species showed characters shared with the family (laticifers and malpiguiaceous trichomes), as well as diagnostic characters and associated with xeromorphy. The data obtained from the leaf architecture can assist in the identification of the species in a vegetative state, while the leaf surface provided unpublished data to the species, indicating the presence of a cuticle with complex ornamentation. Stand out as xeromorphic anatomical features, high stomatal density, high number of trichomes per area, sclerenchymatic columns in the mesophyll and a subepidermal sclerenchyma layer connecting the vascular bundles in the mesophyll.


Resumo: A família Sapotaceae é reconhecida pela sua importância econômica, apresentando potencial alimentício, medicinal e madeireiro. A espécie Pouteria andarahiensis T.D.Penn., conhecida popularmente como "massaranduba", é endêmica da Chapada Diamantina, Bahia, Brasil, e atualmente encontra-se classificada na lista vermelha da IUCN como "em perigo". Pouteria andarahiensis é pouco estudada, destacando este trabalho como o primeiro estudo anatômico para a espécie. Foram empregadas técnicas de microscopia de luz e de microscopia eletrônica de varredura para a realização dos estudos anatômicos. A espécie apresentou caracteres compartilhados com a família (laticíferos e tricomas malpiguiáceos), assim como, caracteres diagnósticos e associados a xeromorfia. Os dados obtidos da arquitetura foliar podem auxiliar na identificação da espécie em estado vegetativo, enquanto a superfície foliar forneceu dados inéditos a espécie, indicando a presença de uma cutícula com ornamentação complexa. Destacam-se como características anatômicas xeromórficas, alta densidade estomática, alto número de tricomas por área, colunas esclerenquimáticas no mesofilo e uma camada subepidérmica de esclerênquima conectando os feixes vasculares no mesofilo.

SELECTION OF CITATIONS
SEARCH DETAIL