Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062884

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.


Subject(s)
Alzheimer Disease , RNA, Long Noncoding , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Humans , RNA, Long Noncoding/genetics , Female , Male , Aged , Precision Medicine/methods , Biomarkers , Machine Learning , Aged, 80 and over , Case-Control Studies , Gene Expression Profiling/methods , Computational Biology/methods
2.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790178

ABSTRACT

Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation. Despite their abundance, the functional consequences of bidirectional promoter architecture remain largely unexplored. This work studies the long-range gene expression regulatory role of a long non-coding RNA gene promoter using chromosome conformation capture methods. We found that this particular bidirectional promoter contributes to distal gene expression regulation in a target-specific manner by establishing promoter-promoter interactions. In particular, we validated that the promoter-promoter interactions of this regulatory element with the promoter of distal gene BBX contribute to modulating the transcription rate of this gene; removing the bidirectional promoter from its genomic context leads to a rearrangement of BBX promoter-enhancer interactions and to increased gene expression. Moreover, long-range regulatory functionality is not directly dependent on its associated non-coding gene pair expression levels.


Subject(s)
Gene Expression Regulation , Promoter Regions, Genetic , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gene Expression Regulation/genetics , Transcription, Genetic , Enhancer Elements, Genetic
3.
Clin Rheumatol ; 43(3): 1253-1259, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38285374

ABSTRACT

Takayasu arteritis (TAK) is a rare systemic vasculitis primarily affecting the aorta and its major branches. Early diagnosis is critical to prevent severe vascular complications, yet current biomarkers are insufficient. This proof-of-concept study explores the potential of long non-coding RNAs (lncRNAs) in TAK, an area largely unexplored. In this cross-sectional study, 53 TAK patients, 53 healthy controls, and 10 rheumatoid arthritis (RA) patients were enrolled. Clinical evaluations, disease activity assessments, and lncRNA expression levels were analyzed. TAK patients exhibited significant dysregulation in several lncRNAs, including THRIL (19.4, 11.1-48.8 vs. 62.5, 48.6-91.4 arbitrary units [a.u.]; p < 0.0001), HIF1A-AS1 (4.5, 1.8-16.6 vs. 26.5, 19.8-33.7 a.u.; p < 0.0001), MALAT-1 (26.9, 13.8-52.5 vs. 92.1, 58.5-92.1 a.u.; p < 0.0001), and HOTAIR (8.0, 2.5-24.5 vs. 36.0, 30.0-43.8 a.u.; p < 0.0001), compared to healthy controls. Notably, HOTAIR (area under the ROC curve [AUC] = 0.825), HIF1A-AS1 (AUC = 0.820), and THRIL (AUC = 0.781) demonstrated high diagnostic potential with superior specificity (approximately 95%). While lncRNAs showed diagnostic promise, no significant correlations with TAK activity were observed. Comparative analysis with RA patients revealed distinct lncRNA expression patterns. This study unveils significant dysregulation of lncRNAs THRIL, HIF1A-AS1, and HOTAIR in TAK patients, underscoring their potential as biomarkers and opening avenues for further research into the mechanistic roles of these lncRNAs in TAK pathogenesis.


Subject(s)
Arthritis, Rheumatoid , RNA, Long Noncoding , Takayasu Arteritis , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Takayasu Arteritis/genetics , Cross-Sectional Studies , Biomarkers
4.
Clin Transl Oncol ; 26(3): 698-708, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37540409

ABSTRACT

PURPOSE: There is compelling evidence that long-stranded non-coding RNAs (lncRNAs) play an important role in the progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of lncRNA XXYLT1 antisense-2 (XXYLT1-AS2) in HCC progression. METHODS: Real-time PCR was used to assess the levels of XXYLT1-AS2 in plasma from HCC and normal patients. Cell proliferation, apoptosis, migration, and invasion were monitored, and tumor xenografts were established to investigate the biological functions of XXYLT1-AS2 by gain-of-function and loss-of-function studies in vitro and in vivo, the expression of autophagy biomarkers and transcriptional factor EB (TFEB) was examined by immunoprecipitation, ubiquitination assays, and western blotting. Autophagy inhibitor, 3-methyladenine (3MA), and proteasome inhibitor, MG132, were used to verify the role of autophagy in HCC progression and the effect of XXYLT1-AS2 on TFEB ubiquitination, respectively. RESULTS: In this study, we identified that lncRNA XXYLT1-AS2 is highly expressed in HCC plasma and promotes tumor growth in vivo. In functional studies, it was found that silent expression of XXYLT1-AS2 inhibited HCC proliferation, migration, invasion, and activated autophagy of HCC cells, which were attenuated by autophagy inhibitor, 3MA. Mechanistically, XXYLT1-AS2 decreased the protein level of TFEB through promoting its degradation by ubiquitin proteasome pathway. CONCLUSION: XXYLT1-AS2 plays an oncogenic role in HCC progression through inhibition of autophagy via promoting the degradation of TFEB, and thus could be a novel target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Liver Neoplasms/pathology , Cell Line, Tumor , Autophagy/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , MicroRNAs/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
5.
Front Plant Sci ; 14: 1275399, 2023.
Article in English | MEDLINE | ID: mdl-38023843

ABSTRACT

Eukaryotic genomes encode thousands of RNA molecules; however, only a minimal fraction is translated into proteins. Among the non-coding elements, long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. LncRNAs are associated mainly with the regulation of the expression of the genome; nonetheless, their study has just scratched the surface. This is somewhat due to the lack of widespread conservation at the sequence level, in addition to their relatively low and highly tissue-specific expression patterns, which makes their exploration challenging, especially in plant genomes where only a few of these molecules have been described completely. Recently published high-quality genomes of crop plants, along with new computational tools, are considered promising resources for studying these molecules in plants. This review briefly summarizes the characteristics of plant lncRNAs, their presence and conservation, the different protocols to find these elements, and the limitations of these protocols. Likewise, it describes their roles in different plant physiological phenomena. We believe that the study of lncRNAs can help to design strategies to reduce the negative effect of biotic and abiotic stresses on the yield of crop plants and, in the future, help create fruits and vegetables with improved nutritional content, higher amounts of compounds with positive effects on human health, better organoleptic characteristics, and fruits with a longer postharvest shelf life.

6.
Microorganisms ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764186

ABSTRACT

COVID-19, a disease caused by the SARS-CoV-2 virus, poses significant threats to the respiratory system and other vital organs. Long non-coding RNAs have emerged as influential epigenetic regulators and promising biomarkers in respiratory ailments. The objective of this study was to identify candidate lncRNAs in SARS-CoV-2-positive individuals compared to SARS-CoV-2-negative individuals and investigate their potential association with ARDS-CoV-2 (acute respiratory distress syndrome). Employing qRT-PCR, we meticulously examined the expression profiles of a panel comprising 84 inflammation-related lncRNAs in individuals presenting upper respiratory infection symptoms, categorizing them into those testing negative or positive for SARS-CoV-2. Notably, first-phase PSD individuals exhibited significantly elevated levels of AC000120.7 and SENP3-EIF4A1. In addition, we measured the expression of two lncRNAs, AC000120.7 and SENP3-EIF4A1, in patients with ARDS unrelated to SARS-CoV-2 (n = 5) and patients with ARDS induced by SARS-CoV-2 (ARDS-CoV-2, n = 10), and interestingly, expression was also higher among patients with ARDS. Intriguingly, our interaction pathway analysis unveiled potential interactions between lncRNA AC000120.7, various microRNAs, and genes associated with inflammation. This study found higher expression levels of lncRNAs AC000120.7 and SENP3-EIF4A1 in the context of infection-positive COVID-19, particularly within the complex landscape of ARDS.

7.
BMC Genomics ; 24(1): 444, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550606

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are defined as transcribed molecules longer than 200 nucleotides with little to no protein-coding potential. LncRNAs can regulate gene expression of nearby genes (cis-acting) or genes located on other chromosomes (trans-acting). Several methodologies have been developed to capture lncRNAs associated with chromatin at a genome-wide level. Analysis of RNA-DNA contacts can be combined with epigenetic and RNA-seq data to define potential lncRNAs involved in the regulation of gene expression. RESULTS: We performed Chromatin Associated RNA sequencing (ChAR-seq) in Anolis carolinensis to obtain the genome-wide map of the associations that RNA molecules have with chromatin. We analyzed the frequency of DNA contacts for different classes of RNAs and were able to define cis- and trans-acting lncRNAs. We integrated the ChAR-seq map of RNA-DNA contacts with epigenetic data for the acetylation of lysine 16 on histone H4 (H4K16ac), a mark connected to actively transcribed chromatin in lizards. We successfully identified three trans-acting lncRNAs significantly associated with the H4K16ac signal, which are likely involved in the regulation of gene expression in A. carolinensis. CONCLUSIONS: We show that the ChAR-seq method is a powerful tool to explore the RNA-DNA map of interactions. Moreover, in combination with epigenetic data, ChAR-seq can be applied in non-model species to establish potential roles for predicted lncRNAs that lack functional annotations.


Subject(s)
Lizards , RNA, Long Noncoding , Animals , Chromatin/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lizards/genetics , Lizards/metabolism , DNA/genetics , Genome
8.
Curr Issues Mol Biol ; 45(6): 4735-4748, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37367050

ABSTRACT

In cancer cells, the long non-coding RNA (lncRNA) MALAT1 has arisen as a key partner for the Polycomb Repressive Complex 2 (PRC2), an epigenetic modifier. However, it is unknown whether this partnership occurs genome-wide at the chromatin level, as most of the studies focus on single genes that are usually repressed. Due to the genomic binding properties of both macromolecules, we wondered whether there are binding sites shared by PRC2 and MALAT1. Using public genome-binding datasets for PRC2 and MALAT1 derived from independent ChIP- and CHART-seq experiments performed with the breast cancer cell line MCF7, we searched for regions containing PRC2 and MALAT1 overlapping peaks. Peak calls for each molecule were performed using MACS2 and then overlapping peaks were identified by bedtools intersect. Using this approach, we identified 1293 genomic sites where PRC2 and MALAT1 concur. Interestingly, 54.75% of those sites are within gene promoter regions (<3000 bases from the TSS). These analyses were also linked with the transcription profiles of MCF7 cells, obtained from public RNA-seq data. Hence, it is suggested that MALAT1 and PRC2 can concomitantly bind to promoters of actively-transcribed genes in MCF7 cells. Gene ontology analyses revealed an enrichment of genes related to categories including cancer malignancy and epigenetic regulation. Thus, by re-visiting occupancy and transcriptomic data, we identified a key gene subset controlled by the collaboration of MALAT1 and PRC2.

9.
Clin Transl Oncol ; 25(10): 2841-2851, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37029242

ABSTRACT

Multiple studies have shown that long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of diverse cancers. Cancer susceptibility candidate 19 (CASC19), encoded by chromosome 8q24.21, is a newly discovered lncRNA that contains 324 nucleotides. CASC19 has been found to be significantly overexpressed in different human cancers, such as non-small cell lung carcinoma, gastric cancer, colorectal cancer, pancreatic cancer, clear cell renal cell carcinoma, glioma, cervical cancer, and nasopharyngeal carcinoma. Moreover, dysregulation of CASC19 was closely associated with clinicopathological parameters and cancer progression. CASC19 regulates a variety of cell phenotypes, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial-mesenchymal transition, autophagy, and therapeutic resistance. In this study, we review recent studies on the characteristics and biological function of CASC19, as well as its role in human cancers. These findings suggest that CASC19 may be both a reliable biomarker and a potential therapeutic target in cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Stomach Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Stomach Neoplasms/genetics , Lung Neoplasms/genetics , Oncogenes , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
10.
Genes (Basel) ; 14(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36833177

ABSTRACT

Candida albicans is one of the most commonly found species in fungal infections. Due to its clinical importance, molecular aspects of the host immune defense against the fungus are of interest to biomedical sciences. Long non-coding RNAs (lncRNAs) have been investigated in different pathologies and gained widespread attention regarding their role as gene regulators. However, the biological processes in which most lncRNAs perform their function are still unclear. This study investigates the association between lncRNAs with host response to C. albicans using a public RNA-Seq dataset from lung samples of female C57BL/6J wild-type Mus musculus with induced C. albicans infection. The animals were exposed to the fungus for 24 h before sample collection. We selected lncRNAs and protein-coding genes related to the host immune response by combining the results from different computational approaches used for gene selection: differential expression gene analysis, co-expression genes network analysis, and machine learning-based gene selection. Using a guilt by association strategy, we inferred connections between 41 lncRNAs and 25 biological processes. Our results indicated that nine up-regulated lncRNAs were associated with biological processes derived from the response to wounding: 1200007C13Rik, 4833418N02Rik, Gm12840, Gm15832, Gm20186, Gm38037, Gm45774, Gm4610, Mir22hg, and Mirt1. Additionally, 29 lncRNAs were related to genes involved in immune response, while 22 lncRNAs were associated with processes related to reactive species production. These results support the participation of lncRNAs during C. albicans infection, and may contribute to new studies investigating lncRNA functions in the immune response.


Subject(s)
RNA, Long Noncoding , Female , Animals , Mice , RNA, Long Noncoding/genetics , Candida albicans/genetics , Transcriptome , Gene Expression Profiling/methods , Lung/metabolism
11.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36582744

ABSTRACT

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

12.
Front Plant Sci ; 13: 1012576, 2022.
Article in English | MEDLINE | ID: mdl-36275565

ABSTRACT

Natural rubber (NR) is an essential industrial raw material widely used in our life. Hevea brasiliensis (Reyan7-33-97) is an economic plant producing natural rubber. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators in numerous biological processes while the characterization and analysis of lncRNAs in Hevea brasiliensis are still largely unrevealed. We integrated the transcriptome datasets from multiple tissues to identify rubber lncRNAs. As a result, 12,029 lncRNAs were found and characterized with notably distinctive features such as longer exon, lower expression levels and GC content, and more tissue specificity in comparison with mRNAs. We discovered thousands of tissue-specific lncRNAs in rubber root, latex, bark, leaf, flower, and seed tissues. The functional enrichment result reveals that tissue-specific lncRNAs are potentially referred to particular functions of tissues, while the non-tissue specific is related to the translation and metabolic processes. In the present study, a comprehensive lncRNA dataset was identified and its functional profile in Hevea brasiliensis was explored, which provides an annotation resource and important clues to understand the biological functions of lncRNAs in Hevea brasiliensis.

13.
Clinics (Sao Paulo) ; 77: 100081, 2022.
Article in English | MEDLINE | ID: mdl-36087568

ABSTRACT

OBJECTIVE: Long Non-Coding RNAs (LncRNAs) act as an indispensable role in cancer development. The study aimed to investigate the role and mechanism of lncRNA Small Nucleolar RNA Host Gene 1 (SNHG1) in Bladder Cancer (BC) progression. METHOD: The expression, prognostic value, diagnostic value, and correlation of SNHG1, Enhancer of Zeste 2 polycomb repressive complex 2 subunit (EZH2), and Kruppel Like Factor 2 (KLF2) were analyzed through bioinformatics analysis. The expression was also validated in BC tissues and cell lines. Besides, their regulation and binding were tested via qPCR, Western blot, Dual-Luciferase Reporter Assay (DLRA), Argonaute RISC catalytic component 2-RNA Immunoprecipitation (AGO2-RIP), and Chromatin Immunoprecipitation (ChIP). A xenograft model in nude mice was also established. RESULTS: SNHG1 was significantly overexpressed in BC tissues and cells. Importantly, SNHG1 was associated with poor survival, and ROC curves revealed high diagnostic values. Moreover, by CCK8, wound healing, transwell, and Western blot analysis, SNHG1 knockdown significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition of BC cells. Additionally, in vivo experiments showed that silencing SNHG1 hindered tumorigenesis and tumor growth. Regarding mechanism, the results of AGO2-RIP, ChIP or DLRA showed that SNHG1 played different roles at diverse subcellular sites. In the cytoplasm, SNHG1 acted as a competing endogenous RNA for miR-137-3p to promote EZH2 expression. In the nucleus, SNHG1 could interact with EZH2 to inhibit KLF2 transcription. CONCLUSION: Our study elucidated that SNHG1 formed a regulatory network and played an oncogenic role in BC, which provided a novel therapeutic target for BC treatment.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Kruppel-Like Transcription Factors/metabolism , MicroRNAs , RNA, Long Noncoding , Urinary Bladder Neoplasms , Animals , Carcinogenesis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Nude , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Urinary Bladder Neoplasms/genetics
14.
Cells ; 11(15)2022 07 30.
Article in English | MEDLINE | ID: mdl-35954194

ABSTRACT

Cancer stem cells are a cell population within malignant tumors that are characterized by the ability to self-renew, the presence of specific molecules that define their identity, the ability to form malignant tumors in vivo, resistance to drugs, and the ability to invade and migrate to other regions of the body. These characteristics are regulated by various molecules, such as lncRNAs, which are transcripts that generally do not code for proteins but regulate multiple biological processes through various mechanisms of action. LncRNAs, such as HOTAIR, H19, LncTCF7, LUCAT1, MALAT1, LINC00511, and FMR1-AS1, have been described as key regulators of stemness in cancer, allowing cancer cells to acquire this phenotype. It has been proposed that cancer stem cells are clinically responsible for the high recurrence rates after treatment and the high frequency of metastasis in malignant tumors, so understanding the mechanisms that regulate the stem phenotype could have an impact on the improvement of cancer treatments.


Subject(s)
Neoplasms , RNA, Long Noncoding , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Phenotype , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
15.
Clin Transl Oncol ; 24(11): 2081-2089, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35852681

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy caused by clonal proliferation of T-cell pre-cursors arising from the thymus. Although the optimized chemotherapy regimen could improve the outcome of such patients, some challenges such as higher risk for induction failure, early relapse and isolated central nervous system (CNS) relapse occurring in T-ALL patients are of great significance, leading to increased mortality rates. Long non-coding RNA (lncRNA) is a key component involved in cell signaling through a variety of mechanisms in regulating gene expression. Oncogenes and tumor suppressors are no exception and their expression can be affected by lncRNAs. In addition, accumulating researches in samples from T-ALL patients as well as pre-clinical studies in mice suggest that the expression profile of lncRNAs in T-ALL could be aberrant, resulting in deregulation of target genes and downstream signaling pathways. In addition, accumulating researches in samples from T-ALL patients as well as pre-clinical studies in mice suggest that the expression profile of lncRNAs in T-ALL could be aberrant, resulting in deregulation of target genes and downstream signaling pathways. These lncRNAs may be determinants of proliferation, apoptosis, and drug resistance observed in T-ALL. Thus, lncRNAs can be a good tool to develop novel strategies against cancer cells in the treatment of relapsed and refractory T-ALL. They can also act as promoting biomarkers in assessing T-ALL and differentiating between patients with poor prognosis and good prognosis.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA, Long Noncoding , Animals , Biomarkers , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Recurrence , Signal Transduction
16.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897749

ABSTRACT

Infectious agents such as viruses, bacteria, and parasites can lead to cancer development. Infection with the helminthic parasite Schistosoma haematobium can cause cancer of the urinary bladder in humans, and infection with the parasites Clonorchis sinensis and Opisthorchis viverrini can promote cholangiocarcinoma. These three pathogens have been categorized as "group 1: carcinogenic to humans" by the International Agency for Research on Cancer (IARC). Additionally, the parasite Schistosoma japonicum has been associated with liver and colorectal cancer and classified as "group 2B: possibly carcinogenic to humans". These parasites express regulatory non-coding RNAs as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which modulate genic expression in different biological processes. In this review, we discuss the potential roles of miRNAS and lncRNAs encoded by helminthic parasites that are classified by the IARC as carcinogenic and possibly carcinogenic to humans. The miRNAs of these parasites may be involved in carcinogenesis by modulating the biological functions of the pathogen and the host and by altering microenvironments prone to tumor growth. miRNAs were identified in different host fluids. Additionally, some miRNAs showed direct antitumoral effects. Together, these miRNAs show potential for use in future therapeutic and diagnostic applications. LncRNAs have been less studied in these parasites, and their biological effects in the parasite-host interaction are largely unknown.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Helminths , MicroRNAs , RNA, Long Noncoding , Animals , Bile Ducts, Intrahepatic , Carcinogenesis/genetics , Helminths/genetics , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Tumor Microenvironment
17.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563588

ABSTRACT

Non-coding RNA (ncRNA)-mediated targeting of various genes regulates the molecular mechanisms of the pathogenesis of hypertension (HTN). However, very few circulating long ncRNAs (lncRNAs) have been reported to be altered in essential HTN. The aim of our study was to identify a lncRNA profile in plasma and plasma exosomes associated with urinary albumin excretion in HTN by next-generation sequencing and to assess biological functions enriched in response to albuminuria using GO and KEGG analysis. Plasma exosomes showed higher diversity and fold change of lncRNAs than plasma, and low transcript overlapping was found between the two biofluids. Enrichment analysis identified different biological pathways regulated in plasma or exosome fraction, which were implicated in fatty acid metabolism, extracellular matrix, and mechanisms of sorting ncRNAs into exosomes, while plasma pathways were implicated in genome reorganization, interference with RNA polymerase, and as scaffolds for assembling transcriptional regulators. Our study found a biofluid specific lncRNA profile associated with albuminuria, with higher diversity in exosomal fraction, which identifies several potential targets that may be utilized to study mechanisms of albuminuria and cardiovascular damage.


Subject(s)
Exosomes , Hypertension , MicroRNAs , RNA, Long Noncoding , Albuminuria/genetics , Albuminuria/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Humans , Hypertension/metabolism , Male , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
18.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);68(4): 456-462, Apr. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1376153

ABSTRACT

SUMMARY OBJECTIVE: The phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway is essential for proper cellular metabolism and cell growth. However, aberrant activation of this pathway has been linked to the progression and metastasis of breast cancer. Recently, the role of long non-coding RNAs in interfering with the cell signaling pathways involved in cell growth and metabolism has been identified. HOX antisense intergenic RNA is an long non-coding RNA whose abnormal expression has been associated with development, therapy resistance, and metastasis of breast cancer. The purpose of this study was to investigate whether the long non-coding RNA HOX antisense intergenic RNA is linked to the phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway in breast cancer cells. METHODS: HOX antisense intergenic RNA was silenced in the breast cancer cell line MCF-7 using siRNAs. Subsequently, the gene expression level of HOX antisense intergenic RNA, PI3K, AKT, and mTOR was assessed using real-time RT-PCR. Also, the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide) assay was used to analyze cell proliferation. RESULTS: The results revealed that HOX antisense intergenic RNA knockdown can downregulate the expression of PI3K, AKT, and mTOR RNAs compared to negative control in MCF-7 cells. In addition, the proliferation of breast cancer cells was significantly reduced following the HOX antisense intergenic RNA silencing. CONCLUSION: This study may introduce HOX antisense intergenic RNA as a molecule involved in the upregulation of the phosphoinositide 3-kinase/protein kinase AKT/mammalian target of rapamycin signaling pathway in breast cancer cells that may contribute to breast cancer cell proliferation.

19.
Biomolecules ; 12(3)2022 03 09.
Article in English | MEDLINE | ID: mdl-35327612

ABSTRACT

Long non-coding RNA (lncRNA) such as ANRIL and UFC1 have been verified as oncogenic genes in non-small cell lung cancer (NSCLC). It is well known that the tumor suppressor microRNA-34a (miR-34a) is downregulated in NSCLC. Furthermore, miR-34a induces senescence and apoptosis in breast, glioma, cervical cancer including NSCLC by targeting Myc. Recent evidence suggests that these two lncRNAs act as a miR-34a sponge in corresponding cancers. However, the biological functions between these two non-coding RNAs (ncRNAs) have not yet been studied in NSCLC. Therefore, we present a Boolean model to analyze the gene regulation between these two ncRNAs in NSCLC. We compared our model to several experimental studies involving gain- or loss-of-function genes in NSCLC cells and achieved an excellent agreement. Additionally, we predict three positive circuits involving miR-34a/E2F1/ANRIL, miR-34a/E2F1/UFC1, and miR-34a/Myc/ANRIL. Our circuit- perturbation analysis shows that these circuits are important for regulating cell-fate decisions such as senescence and apoptosis. Thus, our Boolean network permits an explicit cell-fate mechanism associated with NSCLC. Therefore, our results support that ANRIL and/or UFC1 is an attractive target for drug development in tumor growth and aggressive proliferation of NSCLC, and that a valuable outcome can be achieved through the miRNA-34a/Myc pathway.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitin-Conjugating Enzymes/genetics
20.
Int J Mol Sci ; 23(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35328496

ABSTRACT

Coronary in-stent restenosis is a late complication of angioplasty. It is a multifactorial process that involves vascular smooth muscle cells (VSMCs), endothelial cells, and inflammatory and genetic factors. In this study, the transcriptomic landscape of VSMCs' phenotypic switch process was assessed under stimuli resembling stent injury. Co-cultured contractile VSMCs and endothelial cells were exposed to a bare metal stent and platelet-derived growth factor (PDGF-BB) 20 ng/mL. Migratory capacity (wound healing assay), proliferative capacity, and cell cycle analysis of the VSMCs were performed. RNAseq analysis of contractile vs. proliferative VSMCs was performed. Gene differential expression (DE), identification of new long non-coding RNA candidates (lncRNAs), gene ontology (GO), and pathway enrichment (KEGG) were analyzed. A competing endogenous RNA network was constructed, and significant lncRNA-miRNA-mRNA axes were selected. VSMCs exposed to "stent injury" conditions showed morphologic changes, with proliferative and migratory capacities progressing from G0-G1 cell cycle phase to S and G2-M. RNAseq analysis showed DE of 1099, 509 and 64 differentially expressed mRNAs, lncRNAs, and miRNAs, respectively. GO analysis of DE genes showed significant enrichment in collagen and extracellular matrix organization, regulation of smooth muscle cell proliferation, and collagen biosynthetic process. The main upregulated nodes in the lncRNA-mediated ceRNA network were PVT1 and HIF1-AS2, with downregulation of ACTA2-AS1 and MIR663AHG. The PVT1 ceRNA axis appears to be an attractive target for in-stent restenosis diagnosis and treatment.


Subject(s)
Coronary Restenosis , MicroRNAs , RNA, Long Noncoding , Coronary Restenosis/genetics , Endothelial Cells/metabolism , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL