Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
BMC Cancer ; 24(1): 951, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097719

ABSTRACT

BACKGROUND: Tobacco use is one of the main risk factors for Lung Cancer (LC) development. However, about 10-20% of those diagnosed with the disease are never-smokers. For Non-Small Cell Lung Cancer (NSCLC) there are clear differences in both the clinical presentation and the tumor genomic profiles between smokers and never-smokers. For example, the Lung Adenocarcinoma (LUAD) histological subtype in never-smokers is predominately found in young women of European, North American, and Asian descent. While the clinical presentation and tumor genomic profiles of smokers have been widely examined, never-smokers are usually underrepresented, especially those of a Latin American (LA) background. In this work, we characterize, for the first time, the difference in the genomic profiles between smokers and never-smokers LC patients from Chile. METHODS: We conduct a comparison by smoking status in the frequencies of genomic alterations (GAs) including somatic mutations and structural variants (fusions) in a total of 10 clinically relevant genes, including the eight most common actionable genes for LC (EGFR, KRAS, ALK, MET, BRAF, RET, ERBB2, and ROS1) and two established driver genes for malignancies other than LC (PIK3CA and MAP2K1). Study participants were grouped as either smokers (current and former, n = 473) or never-smokers (n = 200) according to self-report tobacco use at enrollment. RESULTS: Our findings indicate a higher overall GA frequency for never-smokers compared to smokers (58 vs. 45.7, p-value < 0.01) with the genes EGFR, KRAS, and PIK3CA displaying the highest prevalence while ERBB2, RET, and ROS1 the lowest. Never-smokers present higher frequencies in seven out of the 10 genes; however, smokers harbor a more complex genomic profile. The clearest differences between groups are seen for EGFR (15.6 vs. 21.5, p-value: < 0.01), PIK3CA (6.8 vs 9.5) and ALK (3.2 vs 7.5) in favor of never-smokers, and KRAS (16.3 vs. 11.5) and MAP2K1 (6.6 vs. 3.5) in favor of smokers. Alterations in these genes are comprised almost exclusively by somatic mutations in EGFR and mainly by fusions in ALK, and only by mutations in PIK3CA, KRAS and MAP2K1. CONCLUSIONS: We found clear differences in the genomic landscape by smoking status in LUAD patients from Chile, with potential implications for clinical management in these limited-resource settings.


Subject(s)
Lung Neoplasms , Non-Smokers , Smokers , Humans , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Female , Male , Smokers/statistics & numerical data , Middle Aged , Non-Smokers/statistics & numerical data , Aged , Smoking/genetics , Smoking/adverse effects , Smoking/epidemiology , Mutation , Genomics/methods , Adult , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/epidemiology , Carcinoma, Non-Small-Cell Lung/pathology
2.
Bioorg Med Chem Lett ; 112: 129914, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111728

ABSTRACT

Mitogen-activated protein kinase kinases (MAP2Ks) 1, 4, and 7 are potential targets for treating various diseases. Here, we solved the crystal structures of MAP2K1 and MAP2K4 complexed with covalent inhibitor 5Z-7-oxozeaenol (5Z7O). The elucidated structures showed that 5Z7O was non-covalently bound to the ATP binding site of MAP2K4, while it covalently attached to cysteine at the DFG-1 position of the deep ATP site of MAP2K1. In contrast, we previously showed that 5Z7O covalently binds to MAP2K7 via another cysteine on the solvent-accessible edge of the ATP site. Structural analyses and molecular dynamics calculations indicated that the configuration and mobility of conserved gatekeeper methionine located at the central ATP site regulated the binding and access of 5Z7O to the ATP site of MAP2Ks. These structural features provide clues for developing highly potent and selective inhibitors against MAP2Ks. Abbreviations: ATP, adenosine triphosphate; FDA, Food and Drug Administration; MAP2Ks, mitogen-activated protein kinase kinases; MD, molecular dynamics; NSCLC, non-small cell lung cancer; 5Z7O, 5Z-7-oxozeaenol; PDB, protein data bank; RMSD, root-mean-square deviation.

3.
Klin Onkol ; 38(1): 34-39, 2024.
Article in English | MEDLINE | ID: mdl-39183549

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the head and neck squamous cell cancer group. The increasing frequency of oral carcinomas and their late-stage appearance is a major worldwide health concern. MicroRNAs (miRNAs) appear to play an important role in cancer growth and progression, according to growing data, whereas no information is available regarding miR-7113-3p and miR-6721-5p involvement in OSCC. In this article, the expression of MAP2K1, miR-7113-3p, and miR-6721-5p was examined for possible bio-logical functions in the advancement of oral squamous cell carcinoma. MATERIAL AND METHODS: We used quantitative real-time PCR (to examine the mRNA expression of MAP2K1, miR-7113-3p, and miR-6721-5p in fresh frozen OSCC tissues and adjacent normal fresh frozen tissues from 30 patients, and we investigated their relationship with clinical parameters. RESULTS: MAP2K1 expression was found to be dramatically increased in tumor tissues than in normal tissues, whereas miR7113-3p and miR-6721-5p expression was significantly decreased. Furthermore, a statistical correlation of P = 0.04 was also observed between increased MAP2K1 expression and perineural invasion. Additionally, we noted that the downregulation of miR-7113-3p appears to correlate positively with overexpression of MAP2K1 (P = 0.0218), and a negative correlation was observed between downregulation of miR-6721-5p and overexpression of MAP2K1 (P = 0.7771). CONCLUSION: Based on these findings, miR-7113-3p and miR-6721-5p might be prospective bio-markers for OSCC patients, and could be utilized to detect OSCC at an early stage for future dia-gnosis. MAP2K1 overexpression has been linked to the development of OSCC and perineural invasion.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs , Mouth Neoplasms , Tumor Microenvironment , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , MicroRNAs/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism
4.
Front Genet ; 15: 1410979, 2024.
Article in English | MEDLINE | ID: mdl-39086472

ABSTRACT

Cardiofaciocutaneous syndrome (CFC) is a rare genetic disorder that presents with cardiac, craniofacial, and cutaneous symptoms, and is often accompanied by neurological abnormalities, including neurodevelopmental disorders and epilepsy. Regarding epilepsy in CFC, the onset of seizures commonly occurs in childhood. Since research data has mainly been collected from young patients with relatively short observation period, there is insufficient information regarding adult-onset epilepsy in CFC. Here, we report the long-term clinical course of epilepsy and other complications in a 45-year-old female with genetically confirmed CFC carrying a pathogenic de novo heterozygous variant of MAP2K1, c.389 A>G (p.Tyr130Cys). The patient presented psychomotor delay from infancy and had severe intellectual disability with autistic features. At the age of 30, she first developed combined generalized and focal epilepsy that was resistant to anti-seizure medication. Her refractory epilepsy was fairly controlled with a combination of three anti-seizure medications, especially lacosamide, which effectively suppressed both generalized and focal seizures. The present case provides detailed information regarding the clinical course and treatment of adult-onset epilepsy, which may be useful for optimal treatment and prognostic prediction of CFC.

5.
Am J Med Genet A ; : e63854, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166407

ABSTRACT

We report three unrelated individuals with atypical clinical findings for cardio-facio-cutaneous (CFC) syndrome, all of whom have the same novel, heterozygous de novo p.H119Y (c.355 C>T) transition variant in MAP2K1, identified by exome sequencing. MAP2K1 encodes MEK1, dual specificity mitogen-activated protein kinase kinase 1, and is one of four genes in the canonical RAS/MAPK signal transduction pathway associated with CFC syndrome. The p.H119Y variant is a non-conservative amino acid substitution that is predicted to impact the tertiary protein structure, and it occurs at a position in the protein kinase domain of MAP2K1 that is highly conserved across species. The clinical findings in these three individuals include facial features that are nonclassical for CFC syndrome, extremely poor weight gain, absence of congenital cardiac defects or cardiomyopathy, normal cognition or only mild intellectual disabilities, normal hair, mild skin abnormalities, and consistent behavioral features of anxiety, photophobia, and sensory hypersensitivities. These individuals expand the phenotypic spectrum of MAP2K1-related RASopathy.

6.
Int J Hematol ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003680

ABSTRACT

Rosai-Dorfman-Destombes disease (RDD) is a rare histiocytosis characterized by accumulation of S100 + , CD68 + , and CD1a- histiocytes, with emperipolesis. It occurs predominantly in black adolescents and young adults, but rarely in Japanese children. Recently, oncogenic mutations in mitogen-activated protein kinase (MAPK) pathway genes were reported in 30-50% of patients with RDD, and several studies have described treatment of adult patients with MAPK inhibitors. Here, we present the case of a Japanese boy with refractory RDD without signs of cardiofaciocutaneous (CFC) syndrome who harbored MAP2K1 p.Lys59del and responded to trametinib. The patient had lymph node, nasal cavity, kidney, upper respiratory tract, and intracranial involvement. RDD progressed after multi-agent chemotherapy, but responded to trametinib (0.025 mg/kg). Trametinib did not eliminate the mass lesions, but trametinib plus minimal prednisolone (0.1 mg/kg) resulted in a good outcome for more than 15 months, without significant adverse effects. MAP2K1 p.Lys59del has been described as a germline mutation in a patient with CFC syndrome, but not as a somatic mutation in patients with malignancies. Trametinib may be a promising drug for children with RDD that is refractory to multi-agent chemotherapy. Its long-term efficacy and safety alone and in combination with chemotherapy should be investigated.

7.
J Biol Chem ; 300(8): 107551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002671

ABSTRACT

Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.


Subject(s)
GRB2 Adaptor Protein , Microtubule-Associated Proteins , Protein Binding , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/chemistry , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Humans , Signal Transduction , Animals , src Homology Domains , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/chemistry , Proto-Oncogene Proteins c-fyn/genetics , Protein Domains
8.
BMC Cancer ; 24(1): 827, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992592

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS: In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS: Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION: Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.


Subject(s)
Carcinoma, Hepatocellular , Chemokines, CC , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Circular , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , RNA, Circular/genetics , Animals , Mice , Chemokines, CC/genetics , Chemokines, CC/metabolism , Cell Line, Tumor , Cell Movement/genetics , Mice, Nude , MicroRNAs/genetics , Cell Proliferation/genetics , Male
9.
Front Neurol ; 15: 1387743, 2024.
Article in English | MEDLINE | ID: mdl-38938778

ABSTRACT

Glioma, the most prevalent primary brain tumor in adults, is characterized by significant invasiveness and resistance. Current glioma treatments include surgery, radiation, chemotherapy, and targeted therapy, but these methods often fail to eliminate the tumor completely, leading to recurrence and poor prognosis. Immune checkpoint inhibitors, a class of commonly used immunotherapeutic drugs, have demonstrated excellent efficacy in treating various solid malignancies. Recent research has indicated that unconventional levels of expression of the MAP2K3 gene closely correlates with glioma malignancy, hinting it could be a potential immunotherapy target. Our study unveiled substantial involvement of MAP2K3 in gliomas, indicating the potential of the enzyme to serve as a prognostic biomarker related to immunity. Through the regulation of the infiltration of immune cells, MAP2K3 can affect the prognosis of patients with glioma. These discoveries establish a theoretical foundation for exploring the biological mechanisms underlying MAP2K3 and its potential applications in glioma treatment.

10.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Article in English | MEDLINE | ID: mdl-38884726

ABSTRACT

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Subject(s)
Genome-Wide Association Study , Heart Septal Defects, Atrial , Humans , Heart Septal Defects, Atrial/genetics , Genetic Predisposition to Disease/genetics , Mutation
11.
Cesk Patol ; 60(1): 35-48, 2024.
Article in English | MEDLINE | ID: mdl-38697826

ABSTRACT

Spitz tumors represent a heterogeneous group of challenging melanocytic neoplasms, displaying a range of biological behaviors, spanning from benign lesions, Spitz nevi (SN) to Spitz melanomas (SM), with intermediate lesions in between known as atypical Spitz tumors (AST). They are histologically characterized by large epithelioid and/or spindled melanocytes arranged in fascicles or nests, often associated with characteristic epidermal hyperplasia and fibrovascular stromal changes. In the last decade, the detection of mutually exclusive structural rearrangements involving receptor tyrosine kinases ROS1, ALK, NTRK1, NTRK2, NTRK3, RET, MET, serine threonine kinases BRAF and MAP3K8, or HRAS mutation, led to a clinical, morphological and molecular based classification of Spitz tumors. The recognition of some reproducible histological features can help dermatopathologist in assessing these lesions and can provide clues to predict the underlying molecular driver. In this review, we will focus on clinical and morphological findings in molecular Spitz tumor subgroups.


Subject(s)
Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Humans , Nevus, Epithelioid and Spindle Cell/pathology , Nevus, Epithelioid and Spindle Cell/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/diagnosis , Melanoma/pathology , Melanoma/genetics , Melanoma/diagnosis
12.
Biol Direct ; 19(1): 34, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698487

ABSTRACT

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Subject(s)
Epithelial-Mesenchymal Transition , MAP Kinase Kinase Kinases , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Animals , Mice , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Cell Movement , Neoplasm Metastasis
13.
Biomed Pharmacother ; 175: 116693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701566

ABSTRACT

Sevoflurane postconditioning has been shown to provide neuroprotection against cerebral hypoxia-ischemia injury, but the mechanisms remain elusive. Microtubule-associated protein 2 (MAP2) is implicated in early neuronal hypoxia-ischemia injury. This study aimed to investigate whether the neuroprotective effects of sevoflurane postconditioning are related to the Akt/GSK-3ß pathway and its downstream target MAP2 in zebrafish hypoxia/reoxygenation (H/R) model. Sevoflurane postconditioning or GSK-3ß inhibitor TDZD-8 were used to treat H/R zebrafish. The cerebral infarction, neuronal apoptosis, and mitochondrial changes were evaluated using TTC staining, TUNEL staining, and transmission electron microscopy, respectively. The distribution of MAP2 in the brain was determined by immunofluorescence imaging. The levels of Akt, p-Akt, GSK-3ß, p-GSK-3ß, and MAP2 proteins were evaluated by Western blotting. The neurobehavioral recovery of zebrafish was assessed based on optokinetic response behavior. Our results indicated that sevoflurane postconditioning and TDZD-8 significantly reduced the cerebral infarction area, suppressed cell apoptosis, and improved mitochondrial integrity in zebrafish subjected to H/R. Furthermore, sevoflurane postconditioning and TDZD-8 elevated the ratios of p-Akt/Akt and p-GSK-3ß/GSK-3ß. However, the neuroprotective effect of sevoflurane postconditioning was effectively abolished upon suppression of MAP2 expression. In conclusion, sevoflurane postconditioning ameliorated cerebral H/R injury and facilitated the restoration of neurobehavioral function through the activation of Akt/GSK-3ß pathway and promotion of MAP2 expression.


Subject(s)
Glycogen Synthase Kinase 3 beta , Microtubule-Associated Proteins , Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Sevoflurane , Signal Transduction , Zebrafish , Animals , Sevoflurane/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , Microtubule-Associated Proteins/metabolism , Apoptosis/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Ischemic Postconditioning/methods , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Zebrafish Proteins/metabolism , Disease Models, Animal , Mitochondria/drug effects , Mitochondria/metabolism , Male
14.
Acta Pharmacol Sin ; 45(7): 1406-1424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38589687

ABSTRACT

Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.


Subject(s)
Acute Kidney Injury , Cisplatin , Indican , Tumor Necrosis Factor-alpha , Animals , Acute Kidney Injury/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Mice , Male , RAW 264.7 Cells , Rats , Mice, Inbred C57BL , Organic Anion Transporters, Sodium-Independent/metabolism , Rats, Sprague-Dawley , Synaptophysin/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Uremia/metabolism , Uremia/complications , Cell Line, Tumor
15.
Onco Targets Ther ; 17: 307-312, 2024.
Article in English | MEDLINE | ID: mdl-38617091

ABSTRACT

Previous case reports have demonstrated the effectiveness of combination therapy involving EGFR TKI, BRAF inhibitor dabrafenib, and MEK inhibitor trametinib in metastatic non-small-cell lung cancer (NSCLC) patients with acquired BRAF V600E and EGFR mutations. However, the current literature does not provide any reports on the presence of resistant mutations in response to the administration of three-drug combination therapy. Exploring the resistance mechanism of targeted therapy is helpful to optimize the subsequent treatment strategy of patients. Herein, we report a case of a patient with advanced EGFR positive lung adenocarcinoma harboring an acquired BRAF V600E mutation who responded to the combination of furmonertinib, dabrafenib, and trametinib therapy. Unexpectedly, a MAP2K1 K57N acquired mutation was identified by NGS (Next-generation sequencing) analysis of re-biopsy tumor tissue after the patient was resistant to three-drug therapy. As far as we know, this is the first report demonstrating that the efficacy of using combination of furmonertinib and BRAF/MEK inhibitors and the MAP2K1 K57N mutation serves as a resistant mechanism to the three-drug therapy. This novel finding not only revealed a new resistant mutation but also had important implications for the identification of effective patients to EGFR/BRAF/MEK combination therapy.

16.
Aging (Albany NY) ; 16(5): 4224-4235, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38431286

ABSTRACT

Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.


Subject(s)
Leukemia, Myeloid, Acute , Liver Diseases, Alcoholic , MicroRNAs , Humans , Animals , Mice , MAP Kinase Kinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatocytes/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Ethanol , Leukemia, Myeloid, Acute/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
17.
Aging (Albany NY) ; 16(6): 5050-5064, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38517363

ABSTRACT

PURPOSE: This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS: We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS: We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS: Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.


Subject(s)
Annulus Fibrosus , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Animals , Nucleus Pulposus/metabolism , Molecular Docking Simulation , Intervertebral Disc Degeneration/metabolism , Cellular Senescence/physiology , Annulus Fibrosus/metabolism
18.
J Cancer Res Clin Oncol ; 150(2): 76, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38310601

ABSTRACT

PURPOSE: Investigation of Microtubuli-associated Protein 2 (MAP2) expression and its clinical relevance in prostate cancer. MATERIAL AND METHODS: MAP2 expression was immunohistochemically analysed on radical prostatectomy specimens using whole block sections (n = 107) and tissue microarrays (TMA; n = 310). The staining intensity was evaluated for carcinoma, benign tissue and prostatic intraepithelial neoplasia. Expression data were correlated with clinicopathological parameters and biochemical recurrence-free survival. Additionally, MAP2 protein expression was quantitatively analysed in the serum of histologically confirmed prostate carcinoma patients and the control group using a commercial enzyme-linked immunosorbent assay. RESULTS: MAP2 staining was significantly stronger in neoplastic tissue than in non-neoplastic prostatic glands, both in whole block sections (p < 0.01) and in TMA sections (p < 0.05). TMA data revealed significantly stronger MAP2 staining in high-grade tumors. Survival analysis showed a significant correlation between strong MAP2 staining in carcinoma and shortened biochemical recurrence-free survival after prostatectomy (p < 0.001). Multivariate Cox regression analysis confirmed MAP2 as an independent predictor for an unfavourable course. Mean MAP2 serum levels for non-PCA vs. PCA patients differed significantly (non-PCA = 164.7 pg/ml vs. PCA = 242.5 pg/ml, p < 0.001). CONCLUSION: The present data support MAP2 as a novel biomarker in PCA specimens. MAP2 is correlated with tumor grade and MAP2 high-expressing PCA is associated with an increased risk of biochemical recurrence after radical prostatectomy. Future studies are necessary to evaluate MAP2 as a valuable immunohistochemical biomarker in preoperative PCA diagnostic procedures, in particular with regard to treatment modalities.


Subject(s)
Carcinoma , Prostatic Neoplasms , Male , Humans , Prognosis , Prostatic Neoplasms/pathology , Prostatectomy/methods , Carcinoma/surgery , Biomarkers , Microtubule-Associated Proteins , Biomarkers, Tumor/metabolism
19.
Biol Open ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38299702

ABSTRACT

Mouse monoclonal 12E8 antibody, which recognises conserved serine phosphorylated KXGS motifs in the microtubule binding domains of tau/tau-like microtubule associated proteins (MAPs), shows elevated binding in brain during normal embryonic development (mammals and birds) and at the early stages of human Alzheimer's disease (AD). It also labels ADF/cofilin-actin rods that form in neurites during exposure to stressors. We aimed to identify direct and indirect 12E8 binding proteins in postnatal mouse brain and embryonic chick brain by immunoprecipitation (IP), mass spectrometry and immunofluorescence. Tau and/or MAP2 were major direct 12E8-binding proteins detected in all IPs, and actin and/or tubulin were co-immunoprecipitated in most samples. Additional proteins were different in mouse versus chick brain IP. In mouse brain IPs, FSD1l and intermediate filament proteins - vimentin, α-internexin, neurofilament polypeptides - were prominent. Immunofluorescence and immunoblot using recombinant intermediate filament subunits, suggests an indirect interaction of these proteins with the 12E8 antibody. In chick brain IPs, subunits of eukaryotic translation initiation factor 3 (EIF3) were found, but no direct interaction between 12E8 and recombinant Eif3e protein was detected. Fluorescence microscopy in primary cultured chick neurons showed evidence of co-localisation of Eif3e and tubulin labelling, consistent with previous data demonstrating cytoskeletal organisation of the translation apparatus. Neither total tau or MAP2 immunolabelling accumulated at ADF/cofilin-actin rods generated in primary cultured chick neurons, and we were unable to narrow down the major antigen recognised by 12E8 antibody on ADF/cofilin-actin rods.


Subject(s)
Actins , Microtubule-Associated Proteins , Mice , Animals , Humans , Microtubule-Associated Proteins/metabolism , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Tubulin/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Mammals/metabolism
20.
Clin Psychopharmacol Neurosci ; 22(1): 79-86, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38247414

ABSTRACT

Objective: : Pathways associated with glutamate receptors are known to play a role in the pathophysiology of attention-deficit hyperactivity disorder (ADHD). However, cyclin-dependent kinase 5 (CDK5), microtubule-associated protein-2 (MAP2), guanylate kinase-associated protein (GKAP), and postsynaptic density 95 (PSD95), all of which are biomarkers involved in neurodevelopmental processes closely related to glutamatergic pathways, have not previously been studied in patients with ADHD. The main purpose of this study was to evaluate the plasma levels of CDK5, MAP2, GKAP, and PSD95 in children with ADHD and investigate whether these markers have a role in the etiology of ADHD. Methods: : Ninety-six children with ADHD between 6 and 15 years of age and 72 healthy controls were included in the study. Five milliliters of blood samples were taken from all participants. The samples were stored at -80°C until analyzed by the enzyme-linked immunosorbent assay method. Results: : Statistically significantly lower CDK5 levels were observed in children with ADHD than in healthy controls (p = 0.037). The MAP2, GKAP, and PSD95 levels were found to be statistically significantly higher in the ADHD group than in healthy controls (p = 0.012, p = 0.009, and p = 0.024, respectively). According to binary regression analysis, CDK5 and MAP2 levels were found to be predictors of ADHD. Conclusion: : In conclusion, we found that a close relationship existed between ADHD and glutamatergic pathways, and low levels of CDK5 and high levels of MAP2 and GKAP played a role in the etiopathogenesis of ADHD.

SELECTION OF CITATIONS
SEARCH DETAIL