Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 714
Filter
1.
Folia Neuropathol ; 62(2): 215-222, 2024.
Article in English | MEDLINE | ID: mdl-39165207

ABSTRACT

Cerebral ischemia/reperfusion causes high disability, recurrence, and mortality. Ischemic stroke is a powerful stimulus that triggers significant microglia activation. Ginsenoside Rb1 (GS-Rb1) has been demonstrated to have neuroprotective effects in the central nervous system. In this study, the effects of GS-Rb1 against cerebral ischemia/reperfusion were explored. A mouse model of middle cerebral artery occlusion (MCAO) was used to mimic the cerebral ischemia/reperfusion. Mice in MCAO + GS-Rb1 groups received 5, 10, or 20 mg/kg GS-Rb1 through intraperitoneal injection. Modified neurological severity scoring (mNSS) showed neurological function, while the open field test tested the anxiety-like behaviors. Cognitive impairment was evaluated by Morris water maze. Protein levels were evaluated by ELISA and Western blot and mRNA levels were analyzed by qRT-PCR. When compared to the MCAO mice, mice in the MCAO + GS-Rb1 group had significantly lower mNSS scores and less brain water content. GS-Rb1 alleviated both cognitive impairment and anxiety and inhibited microglial activation in the cerebral ischemia/reperfusion model. GS-Rb1 enhanced M2-type microglia polarization while inhibiting M1-type microglia polarization. In summary, we observed that GS-Rb1 had neuro-protective effects in a cerebral ischemia/reperfusion mouse model through regulating the microglia polarization.


Subject(s)
Ginsenosides , Microglia , Neuroprotective Agents , Reperfusion Injury , Animals , Ginsenosides/pharmacology , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Neuroprotective Agents/pharmacology , Male , Disease Models, Animal , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Mice, Inbred C57BL
2.
Acta Biomater ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122135

ABSTRACT

Mitophagy influences the progression and prognosis of ischemic stroke (IS). However, whether DNA methylation in the brain is associated with altered mitophagy in hypoxia-injured neurons remains unclear. Here, miR-138-5p was found to be highly expressed in exosomes secreted by astrocytes stimulated with oxygen and glucose deprivation/re-oxygenation (OGD/R), which could influence the recovery of OGD/R-injured neurons through autophagy. Mechanistically, miR-138-5p promotes the stable expression of Ras homolog enriched in brain like 1(Rhebl1) through DNA-methyltransferase-3a (DNMT3A), thereby enhancing ubiquitin-dependent mitophagy to maintain mitochondrial homeostasis. Furthermore, we employed glycosylation engineering and bioorthogonal click reactions to load mirna onto the surface of microglia and deliver them to injured region utilising the inflammatory chemotactic properties of microglia to achieve drug-targeted delivery to the central nervous system (CNS). Our findings demonstrate miR-138-5p improves mitochondrial function in neurons through the miR-138-5p/DNMT3A/Rhebl1 axis. Additionally, our engineered cell vector-targeted delivery system could be promising for treating IS. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that miR-138-5p in exosomes secreted by astrocytes under hypoxia plays a critical role in the treatment of hypoxia-injured neurons. And we find a new target of miR-138-5p, DNMT3A, which affects neuronal mitophagy and thus exerts a protective effect by regulating the methylation of Rbebl1. Furthermore, we have developed a carrier delivery system by combining miR-138-5p with the cell membrane of microglia and utilized the inflammatory chemotactic properties of microglia to deliver this system to the brain via intravenous injection. This groundbreaking study not only provides a novel therapeutic approach for ischemia-reperfusion treatment but also establishes a solid theoretical foundation for further research on targeted drug delivery for central nervous system diseases with promising clinical applications.

3.
IBRO Neurosci Rep ; 17: 131-137, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39175643

ABSTRACT

Middle cerebral artery occlusion (MCAO) is a model for inducing ischemic stroke in rodents, leading to devastating brain damage. Oxidative stress (OS) plays a crucial role in the pathogenesis of ischemia. In this study, the effect of melatonin and N-acetylcysteine on ischemia-reperfusion-induced oxidative stress injury in the cerebral cortex of male rats was investigated. 30 male Wistar rats were divided into sham, ischemic, NAC, melatonin and NAC + melatonin groups. All groups, except the sham group, underwent MCAO on the left side, and the treatment groups received intraperitoneal injections of either 50 mg/kg N-acetylcysteine (NAC) or 5 mg/kg melatonin or a combination of both 24 and 48 hours later. At 24 and 72 hours after surgery, the animals were examined for sensory and motor activity. The cerebral cortex was dissected after sacrificing the rats, infarct volume estimated and the concentrations of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nuclear factor erythroid-2 related factor 2 (Nrf2) were analyzed by enzyme-linked immunosorbent assay (ELISA). The results indicate that the NAC + melatonin group exhibited elevated sensory-motor activity and a reduced infarct volume rate in comparison to the ischemic group (p≤ 0.05). Compared to the ischemic group, the NAC + melatonin group showed a significant increase in SOD concentration and a significant decrease in MDA (p≤ 0.05). It can therefore be concluded that the simultaneous administration of NAC and melatonin can reduce the cerebral infarction volume, and improve neurological functions by modulating SOD and MDA.

4.
Brain Res Bull ; 215: 111032, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029715

ABSTRACT

BACKGROUND: Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism. METHODS: The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes. RESULTS: Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs' cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs. CONCLUSION: In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.


Subject(s)
Apoptosis , Drugs, Chinese Herbal , Endothelial Cells , Glycolysis , Ischemic Stroke , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Apoptosis/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glycolysis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Rats , Male , Brain/drug effects , Brain/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Survival/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Glucose/metabolism , Microvessels/drug effects , Microvessels/metabolism , Disease Models, Animal
5.
Biochem Biophys Res Commun ; 733: 150452, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067246

ABSTRACT

Due to the complex pathogenesis of acute ischemic stroke (AIS), further investigation into its underlying mechanisms is necessary. Presently, existing literature indicates a close association between ferroptosis and AIS injury; however, the precise mechanism and molecular target of ferroptosis in AIS injury remain elusive. By RNA sequencing, we found a significant increase in LCN2 expression in the ischemic cortex. In order to investigate the potential role of LCN2 in modulating AIS injury through the regulation of ferroptosis, we utilized RNA interference (RNAi) knockdown and gene overexpression experiments. The findings from experiments conducted both in vitro and in vivo revealed a marked increase in ferroptosis levels within the AIS model group. Suppression of the LCN2 gene resulted in a significant reduction in ferroptosis levels in OGD/R cells. Conversely, upregulation of LCN2 exacerbated ferroptosis levels in OGD/R cells. The results suggest that elevated levels of ferroptosis may result from heightened expression of LCN2, thereby exacerbating ischemia/reperfusion injury. This study indicates the involvement of ferroptosis in the pathogenesis of AIS and highlights LCN2 as a regulator of ferroptosis in AIS-induced injury, suggesting a potential therapeutic target for ischemic stroke.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167270, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823461

ABSTRACT

Stroke is a major public health concern, with limited clinically approved interventions available to enhance sensorimotor recovery beyond reperfusion. Remarkably, spontaneous recovery is observed in certain stroke patients, suggesting the existence of a brain self-repair mechanism not yet fully understood. In a rat model of permanent cerebral ischemia, we described an increase in oligodendrocytes expressing 3RTau in damaged area. Considering that restoration of myelin integrity ameliorates symptoms in many neurodegenerative diseases, here we hypothesize that this cellular response could trigger remyelination. Our results revealed after ischemia an early recruitment of OPCs to damaged area, followed by their differentiation into 3RTau+ pre-myelinating cells and subsequent into remyelinating oligodendrocytes. Using rat brain slices and mouse primary culture we confirmed the presence of 3RTau in pre-myelinating and a subset of mature oligodendrocytes. The myelin status analysis confirmed long-term remyelination in the damaged area. Postmortem samples from stroke subjects showed a reduction in oligodendrocytes, 3RTau+ cells, and myelin complexity in subcortical white matter. In conclusion, the dynamics of oligodendrocyte populations after ischemia reveals a spontaneous brain self-repair mechanism which restores the functionality of neuronal circuits long-term by remyelination of damaged area. This is evidenced by the improvement of sensorimotor functions in ischemic rats. A deep understanding of this mechanism could be valuable in the search for alternative oligodendrocyte-based, therapeutic interventions to reduce the effects of stroke.


Subject(s)
Brain Ischemia , Myelin Sheath , Oligodendroglia , Remyelination , Animals , Oligodendroglia/metabolism , Oligodendroglia/pathology , Remyelination/physiology , Rats , Myelin Sheath/metabolism , Myelin Sheath/pathology , Brain Ischemia/pathology , Brain Ischemia/metabolism , Humans , Mice , Male , Cell Differentiation , Disease Models, Animal , White Matter/pathology , White Matter/metabolism , Female , Stroke/pathology , Stroke/metabolism , Mice, Inbred C57BL
7.
Exp Neurol ; 378: 114843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823675

ABSTRACT

Poststroke neuroinflammation exacerbates disease progression. [11C]PK11195-positron emission tomography (PET) imaging has been used to visualize neuroinflammation; however, its short half-life of 20 min limits its clinical use. [123I]CLINDE has a longer half-life (13h); therefore, [123I]CLINDE-single-photon emission computed tomography (SPECT) imaging is potentially more practical than [11C]PK11195-PET imaging in clinical settings. The objectives of this study were to 1) validate neuroinflammation imaging using [123I]CLINDE and 2) investigate the mechanisms underlying stroke in association with neuroinflammation using multimodal techniques, including magnetic resonance imaging (MRI), gas-PET, and histological analysis, in a rat model of ischemic stroke, that is, permanent middle cerebral artery occlusion (pMCAo). At 6 days post-pMCAo, [123I]CLINDE-SPECT considerably corresponded to the immunohistochemical images stained with the CD68 antibody (a marker for microglia/microphages), comparable to the level observed in [11C]PK11195-PET images. In addition, the [123I]CLINDE-SPECT images corresponded well with autoradiography images. Rats with severe infarcts, as defined by MRI, exhibited marked neuroinflammation in the peri-infarct area and less neuroinflammation in the ischemic core, accompanied by a substantial reduction in the cerebral metabolic rate of oxygen (CMRO2) in 15O-gas-PET. Rats with moderate-to-mild infarcts exhibited neuroinflammation in the ischemic core, where CMRO2 levels were mildly reduced. This study demonstrates that [123I]CLINDE-SPECT imaging is suitable for neuroinflammation imaging and that the distribution of neuroinflammation varies depending on the severity of infarction.


Subject(s)
Disease Models, Animal , Tomography, Emission-Computed, Single-Photon , Animals , Rats , Tomography, Emission-Computed, Single-Photon/methods , Male , Rats, Sprague-Dawley , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Stroke/pathology , Stroke/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology
8.
Sci Rep ; 14(1): 11240, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755191

ABSTRACT

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Animals , Rats , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/prevention & control , Molecular Docking Simulation , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
9.
J Neuropathol Exp Neurol ; 83(7): 615-625, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38804899

ABSTRACT

Breviscapine (Bre), an extract from Erigeron breviscapus, has been widely used to treat cerebral ischemia but the mechanisms of its neuroprotective effects need to be clarified. The present study investigated whether Bre could alleviate excessive autophagy induced by cerebral ischemia in the rat middle cerebral artery occlusion (MCAO) ischemia model via activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5)/B-cell lymphoma 2 (BCL2) pathway. Rats were randomly divided into 5 groups, i.e. Sham group, MCAO+saline group, MCAO+Bre group, MCAO+DMSO (Dimethyl sulfoxide) group, and MCAO+Bre+AG490 (Tyrphostin AG490, the inhibitor of STAT5) group. The model was established and neuroprotection was evaluated by determining infarct volumes and conducting neurological behavioral tests. Autophagy levels in the infarct penumbra were detected using transmission electron microscopy and Western blotting. The expression of proteins in the JAK2/STAT5/BCL2 pathway was tested by Western blotting. Compared to the MCAO+saline group, the infarct volumes in the MCAO+Bre group were significantly reduced and neurological behavior improved. Breviscapine administration also significantly increased p-JAK2, p-STAT5, and BCL2 expression but decreased autolysosome numbers; it also downregulated Beclin-1 expression and the LC3II/LCI ratio. The JAK2 inhibitor AG490 reversed these effects. These findings indicate that breviscapine can improve neural recovery following ischemia through alleviating excessive autophagy and activation of the JAK2/STAT5/BCL2 axis.


Subject(s)
Autophagy , Disease Models, Animal , Flavonoids , Janus Kinase 2 , Proto-Oncogene Proteins c-bcl-2 , Rats, Sprague-Dawley , STAT5 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , Flavonoids/pharmacology , Male , Rats , Autophagy/drug effects , Autophagy/physiology , STAT5 Transcription Factor/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Ischemic Attack, Transient/drug therapy , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/metabolism , Neuroprotective Agents/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Tyrphostins
10.
Biol Direct ; 19(1): 26, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582839

ABSTRACT

Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reactive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR) activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings indicate that the pharmacological inhibition of mTORC1 in the acute phase of ischemia may provide an alternative strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.


Subject(s)
Brain Ischemia , Microglia , Mice , Animals , Mechanistic Target of Rapamycin Complex 1 , Neuroinflammatory Diseases , Brain Ischemia/drug therapy , Brain Ischemia/genetics , TOR Serine-Threonine Kinases/therapeutic use , Ischemia , Sirolimus/pharmacology , Sirolimus/therapeutic use , Mammals
11.
Open Life Sci ; 19(1): 20220829, 2024.
Article in English | MEDLINE | ID: mdl-38585626

ABSTRACT

Ischemic stroke remains a major cause of disability and death. Kaempferol (Kae) is a neuroprotective flavonoid compound. Thus, this study aimed to explore the impact of Kae on cerebral infarction. We generated the middle cerebral artery occlusion (MCAO) mouse model to study the effects of Kae on infarction volume and neurological function. The oxygen and glucose deprivation (OGD)/reoxygenation (R) model of neural stem cells (NSCs) was established to study the effects of Kae on cell viability, migration, and apoptosis. Cell processes were assessed by cell counting kit-8, Transwell assay, flow cytometry, and TUNEL analysis. The molecular mechanism was assessed using the Western blot. The results indicated that Kae attenuated MCAO-induced cerebral infarction and neurological injury. Besides, Kae promoted cell viability and migration and inhibited apoptosis of OGD/R-treated NSCs. Moreover, OGD/R suppressed total O-GlcNAcylation level and O-GlcNAcylation of ß-catenin, thereby suppressing the Wnt/ß-catenin pathway, whereas Kae reversed the suppression. Inactivation of the Wnt/ß-catenin pathway abrogated the biological functions of NSCs mediated by Kae. In conclusion, Kae suppressed cerebral infarction by facilitating NSC viability, migration, and inhibiting apoptosis. Mechanically, Kae promoted O-GlcNAcylation of ß-catenin to activate the Wnt/ß-catenin pathway. Kae may have a lessening effect on ischemic stroke.

12.
J Stroke Cerebrovasc Dis ; 33(6): 106578, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636320

ABSTRACT

BACKGROUND: Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS: Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS: Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS: The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.


Subject(s)
Aquaporin 4 , Astrocytes , Dipeptides , Disease Models, Animal , Infarction, Middle Cerebral Artery , Microglia , Rats, Sprague-Dawley , Receptor, Notch1 , Recovery of Function , Signal Transduction , Animals , Aquaporin 4/metabolism , Receptor, Notch1/metabolism , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/physiopathology , Male , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Dipeptides/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Time Factors , Neuroprotective Agents/pharmacology , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/pathology
13.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576159

ABSTRACT

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Subject(s)
Cicatrix , Gliosis , Infarction, Middle Cerebral Artery , Animals , Gliosis/metabolism , Gliosis/pathology , Mice , Cicatrix/metabolism , Cicatrix/pathology , Infarction, Middle Cerebral Artery/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Male , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Stroke/metabolism , Stroke/pathology , Obesity/metabolism , Obesity/complications , Extracellular Matrix Proteins/metabolism , Hyperglycemia/metabolism
14.
Toxicol Res (Camb) ; 13(2): tfae052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567035

ABSTRACT

Objective: Storke is a leading cause of death and disability affecting million people worldwide, 80% of which is ischemic stroke (IS). Recently, traditional Chinese medicines (TCMs) have received great attentions in treating IS due to their low poisonous effects and high safety. Buyang Huanwu Decoction (BHD), a famous and classical Chinese prescription, has been used for treating stroke-induced disability for centuries. Yet, its underlying mechanism is still in fancy. Methods: We first constructed an IS model by middle cerebral artery occlusion (MCAO). Then, a metabonomics study on serum samples was performed using UHPLC-QTOF/MS, followed by multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Results: Metabolic profiling of PCA indicated metabolic perturbation caused by MCAO was regulated by BHD back to normal levels, which is in agreement with the neurobehavioral evaluations. In the OPLS-DA, 12 metabolites were screened as potential biomarkers involved in MCAO-induced IS. Three metabolic pathways were recognized as the most relevant pathways, involving one carbon pool by folate, sphingolipid metabolism and inositol phosphate metabolism. BHD significantly reversed the abnormality of 7 metabolites to normal levels. Conclusions: This is the first study to investigate the effect of BHD on IS at the metabolite level and to reveal the underlying mechanisms of BHD, which is complementary to neurobehavioral evaluation. In a broad sense, the current study brings novel and valuable insights to evaluate efficacy of TCMs, to interpret the action mechanisms, and to provide the theoretical basis for further research on the therapeutic mechanisms in clinical practice.

15.
Brain Behav ; 14(3): e3449, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468566

ABSTRACT

AIMS: To distinguish between the genuine cellular impact of the ischemic cascade by leukocytes and unspecific effects of edema and humoral components, two knock-in mouse lines were utilized. Mouse lines Y731F and Y685F possess point mutations in VE-cadherin, which lead to a selective inhibition of transendothelial leukocyte migration or impaired vascular permeability. METHODS: Ischemic stroke was induced by a model of middle cerebral artery occlusion. Analysis contained structural outcomes (infarct volume and extent of brain edema), functional outcomes (survival analysis, rotarod test, and neuroscore), and the extent and spatial distribution of leukocyte migration (heatmaps and fluorescence-activated cell sorting (FACS) analysis). RESULTS: Inhibition of transendothelial leukocyte migration as in Y731F mice leads to smaller infarct volumes (52.33 ± 4719 vs. 70.43 ± 6483 mm3 , p = .0252) and improved motor skills (rotarod test: 85.52 ± 13.24 s vs. 43.06 ± 15.32 s, p = .0285). An impaired vascular permeability as in Y685F mice showed no effect on structural or functional outcomes. Both VE-cadherin mutations did not influence the total immune cell count or spatial distribution in ischemic brain parenchyma. CONCLUSION: Selective inhibition of transendothelial leukocyte migration by VE-cadherin mutation after ischemic stroke in a mouse model leads to smaller infarct volumes and improved motor skills.


Subject(s)
Antigens, CD , Cadherins , Ischemic Stroke , Stroke , Mice , Animals , Motor Skills , Leukocytes/physiology , Infarction , Mutation , Stroke/genetics
16.
CNS Neurosci Ther ; 30(2): e14637, 2024 02.
Article in English | MEDLINE | ID: mdl-38380702

ABSTRACT

AIMS: Sleep disorders are prevalent among stroke survivors and impede stroke recovery, yet they are still insufficiently considered in the management of stroke patients, and the mechanisms by which they occur remain unclear. There is evidence that boosting phasic GABA signaling with zolpidem during the repair phase improves stroke recovery by enhancing neural plasticity; however, as a non-benzodiazepine hypnotic, the effects of zolpidem on post-stroke sleep disorders remain unclear. METHOD: Transient ischemic stroke in male rats was induced with a 30-minute middle cerebral artery occlusion. Zolpidem or vehicle was intraperitoneally delivered once daily from 2 to 7 days after the stroke, and the electroencephalogram and electromyogram were recorded simultaneously. At 24 h after ischemia, c-Fos immunostaining was used to assess the effect of transient ischemic stroke and acute zolpidem treatment on neuronal activity. RESULTS: In addition to the effects on reducing brain damage and mitigating behavioral deficits, repeated zolpidem treatment during the subacute phase of stroke quickly ameliorated circadian rhythm disruption, alleviated sleep fragmentation, and increased sleep depth in ischemic rats. Immunohistochemical staining showed that in contrast to robust activation in para-infarct and some remote areas by 24 h after the onset of focal ischemia, the activity of the ipsilateral suprachiasmatic nucleus, the biological rhythm center, was strongly suppressed. A single dose of zolpidem significantly upregulated c-Fos expression in the ipsilateral suprachiasmatic nucleus to levels comparable to the contralateral side. CONCLUSION: Stroke leads to suprachiasmatic nucleus dysfunction. Zolpidem restores suprachiasmatic nucleus activity and effectively alleviates post-stroke sleep disturbances, indicating its potential to promote stroke recovery.


Subject(s)
Ischemic Stroke , Sleep Wake Disorders , Stroke , Humans , Male , Rats , Animals , Zolpidem/pharmacology , Zolpidem/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Stroke/complications , Stroke/drug therapy , Sleep Wake Disorders/drug therapy , Sleep Wake Disorders/etiology , Infarction, Middle Cerebral Artery/drug therapy , Sleep , Ischemic Stroke/drug therapy
17.
Eur J Pharmacol ; 971: 176439, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38401605

ABSTRACT

AIMS: Ischemic stroke accounts for 87% of all strokes, and its death and disability bring a huge burden to society. Brain injury caused by ischemia-reperfusion (I/R) is also a major difficulty in clinical treatment and prognosis. Sophoricoside (SOP) is an isoflavone glycoside isolated from the seed of medical herb Sophora japonica L. Previously, SOP was found to be effective in anti-inflammation and glucose-lipid metabolism-related diseases. In order to investigate whether SOP has a regulatory effect on cerebral I/R injury, we conducted this study. METHODS: Here, by application of SOP into MCAO (transient middle cerebral artery occlusion)-induced mice and OGD/R (oxygen glucose deprivation/reperfusion)-induced primary neurons, the regulation effects of SOP was analyzed by detecting neurological score of post-stroke mice, phenotypes of brains and brain sections, cell viabilities, and apoptosis- and inflammation-regulation. RNA sequencing and molecular biology experiments were performed to explore the mechanism of SOP regulating cerebral I/R injury. RESULTS: SOP administration decreased the infarct size, neurological deficit score, neuronal cell injury, inflammation and apoptosis. Mechanistically, SOP exerted its protective effect by activating the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION: SOP inhibits cerebral I/R injury by promoting the phosphorylation of AMPK.


Subject(s)
Benzopyrans , Brain Ischemia , Reperfusion Injury , Stroke , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Stroke/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Glucose/metabolism , Inflammation , Apoptosis
18.
Heliyon ; 10(2): e24233, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293500

ABSTRACT

Background: Estimation of brain damage following an ischemic stroke is most often performed within the first few days after the insult, where large amounts of oedematous fluid have accumulated. This can potentially hamper correct measurement of infarcted area, since oedema formation poorly reflects infarct size. This study presents a non-invasive, easily applicable and reliable method to accurately predict long-term evolution and late-stage infarction. Objective: We performed a longitudinal analysis of brain infarct evolution after MCAO in mice, in order to determine whether water-compensated N-Acetylaspartate (NAA) levels in the infarct area, measured 24 h after the insult, is a suitable marker for late-stage infarction and thereby prognosis. Methods: Twenty mice were divided into 4 groups and scanned longitudinally at different time-points after MCAO, followed by euthanisation for histology: Group 1) MRI/MRS at day 1 after MCAO (n = 4), Group 2) MRI/MRS at days 1 and 7 after MCAO (n = 5), Group 3) MRI/MRS at days 1, 7, and 14 after MCAO (n = 3), and Group 4) MRI/MRS at days 1, 7, 14, and 28 after MCAO (n = 4). At days 1, 7, 14, and 28, NAA levels were correlated with histological determination of neuronal death based on Nissl and H&E stainings. Results: Twenty-four hours after the insult, NAA levels in the infarcted area decreased by 35 %, but steadily returned to normal after 28 days. In the acute phases, NAA levels strongly correlated with loss of Nissl substance (r2 = -0.874, p = 0.002), whereas NAA levels in later stages reflect glial metabolism and tissue reorganisation. Most importantly, NAA levels 24 h after MCAO was highly correlated with late stage infarction at days 14 and 28 (r2 = 0.73, p = 0.01), in contrast to T2 (r2 = 0.06, p = 0.59). Conclusions: By using a fixed voxel, which is easily positioned in the affected area, it is possible to obtain reliable measures of the extent of neuronal loss at early time points independent of oedema and brain deformation. Importantly, NAA levels 24 h after MCAO accurately reflects late-stage infarction, suggesting that NAA is a useful prognostic biomarker early after an ischemic stroke.

19.
Aging (Albany NY) ; 16(2): 1925-1937, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38289595

ABSTRACT

The objective of this study is to investigate the impact of melatonin on ischemic brain injury and elucidate its underlying molecular mechanism. In this investigation, a mouse model of middle cerebral artery occlusion (MCAO) was established using the thread occlusion method, followed by treatment with two different doses of melatonin: 5 mg/kg and 10 mg/kg. Additionally, HT-22 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) and treated with varying concentrations of melatonin. The findings demonstrated that melatonin significantly reduced the extent of cerebral ischemia, nerve damage, brain edema, and neuronal apoptosis in MCAO mice. In vitro experiments further revealed that melatonin effectively enhanced cell proliferation while reducing cell apoptosis and reactive oxygen species (ROS) production following OGD/R treatment. Mechanistic investigations unveiled that melatonin exerted its protective effect by inhibiting ferroptosis through modulation of MDM2-mediated ubiquitination of ACSL4. In summary, this study suggests that melatonin regulates the MDM2/ACSL4 pathway to safeguard against ischemic brain injury, thereby providing novel therapeutic targets for such conditions.


Subject(s)
Brain Ischemia , Coenzyme A Ligases , Melatonin , Proto-Oncogene Proteins c-mdm2 , Stroke , Animals , Mice , Apoptosis , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Glucose/pharmacology , Infarction, Middle Cerebral Artery/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Stroke/drug therapy , Stroke/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Coenzyme A Ligases/metabolism , Ubiquitination
20.
Saudi Pharm J ; 32(1): 101898, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38192384

ABSTRACT

Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-ß-D-apiosyl-(1''' â†’ 6'')- ß-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.

SELECTION OF CITATIONS
SEARCH DETAIL