Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Heliyon ; 10(15): e35179, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39165958

ABSTRACT

In order to create sustainable conservation policies for biodiversity, it is imperative that participatory forest management (PFM) be assessed. Forests contribute to the sustainability of the planet by controlling soil erosion in agricultural areas and by moderating the effects of climate change. However, Ethiopia's forest resources have been under intense pressure because of the increased demand for wood products and agricultural conversion. As one of the potential solutions, the PFM programme was implemented in 1990. This study set out to investigate the effects of the PFM programme on land use and land cover (LULC) in the Alle district of southwest Ethiopia, as well as the variables influencing community involvement and the obstacles to PFM implementation and community involvement. Changes in forest cover were detected using Landsat images from 1992, 2012, and 2022 obtained from Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), and Operational Land Imager (OLI). Images were obtained during the dry season and were cloud-free. A total of 240 respondents were chosen by means of a straightforward random sampling technique, and survey data were collected using questionnaires, interviews, and field observations. Data were analyzed using ArcGIS 10.5, ERDAS Imagine 2015, SPSS version 20, and Excel 2010. The change in forest cover shows an increasing trend from 2012 to 2022. Again, grassland and wetland coverage in this study decreased rapidly. In the years 2012-2022, forest land increased from 462.7ha (74.8 %), to 569.8ha (92.1 %), while, the agricultural land, grassland, and wetland were reduced from 109.5ha (17.7 %) to 37.8ha (6.1 %), 31.9ha (5.2 %) to 0.0ha (0.0 %); 14.1 ha (2.3 %), to 10.8 ha (1.7 %) respectively. There have been beneficial developments in the forests over the last 30 years. The binary logistic regression model disclose that, land ownership had a negative impact on forest management participation, while other factors such as gender, education level, family size, TLU, access to credit, training, and law enforcement had a positive and significant (p < 0.05) effect on PFM practices. LULC change in study area causes rapid wetland ecosystem deterioration, which may result in the extinction of the most significant and ecologically valuable species and a loss of biodiversity in the environment. In this context, developing an integrated participatory approach requires rapid attention, and all farmers and stakeholders must be actively involved in PFM programs.

2.
J Food Sci Technol ; 61(7): 1334-1342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910931

ABSTRACT

This study examines the use of hyperspectral imaging for the identification of stale food items by analyzing minute changes in their spectral signatures. An algorithm is proposed for the detection of subtle alterations in spectral signatures and is validated through intra-class classification comparisons among various stages of adulterating food samples acquired using a spectroradiometer. The analysis reveals that the spectral angle mapper proves effective for inter-class classification of consumable food items but faces challenges in classifying slight changes in spectral signatures within the same category. In contrast, DNA encoding demonstrates reliability, despite the generated code-words being independent of the actual intensity of received reflectance at each band. DNA encoding can provide insights into the nature of absorbance or reflectance at each band, making it a valuable tool for intra-class classification. Additionally, a novel concept called spectral velocity is introduced for subclass pattern matching. This method of single-pixel analysis relies on artificially constructed nD-vectors derived from spectral signatures. The findings suggest that the combination of hyperspectral imaging and DNA encoding offers a valuable tool for the quality assurance of consumable food items and demonstrates its potential for ensuring food safety and quality, ultimately contributing to human health.

3.
Ecol Evol ; 14(6): e11551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863719

ABSTRACT

Body mass plays a crucial role in determining the mass-specific energy expenditure during terrestrial locomotion across diverse animal taxa, affecting locomotion patterns. The energy landscape concept offers a framework to explore the relationship between landscape characteristics and energy expenditure, enhancing our understanding of animal movement. Although the energy landscape approach solely considers the topographic obstacles faced by animals, its suitability compared to previous methods for constructing resistance maps and delineating corridors has not been comprehensively examined. In this study, we utilized the enerscape R package to generate resistance maps in kilocalories (kcal) by incorporating digital elevation models (DEMs) and body size data (kg). We assigned body sizes ranging from 0.5 to 100 kg to encompass a wide range of small and large mammals in Iran, adjusting maximum dispersal distances accordingly from 50 to 200 km. By analyzing these scenarios, we produced four resistance maps for each body size. Next, we identified potential corridors between terrestrial protected areas in Iran using the Linkage Mapper toolkit and examined barriers and pinch-points along these paths. Our study revealed significant findings regarding the shared corridors between small and large mammals in Iran's landscape. Despite their differing body sizes and energy requirements, many corridors were found to be utilized by both small and large mammal species. For example, we identified 206 corridors for mammals weighing 500 g, which were also recognized as the least-cost paths for 100 kg mammals. Thus, embracing a comprehensive method in resistance map creation, one that incorporates species-specific traits and human infrastructure becomes imperative for accurately identifying least-cost paths and consequently pinpointing pinch points and barriers.

4.
Phys Eng Sci Med ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771442

ABSTRACT

Surgical excision is the most effective treatment of skin carcinomas (basal cell carcinoma or squamous cell carcinoma). Preoperative assessment of tumoral margins plays a decisive role for a successful result. The aim of this work was to evaluate the possibility that hyperspectral imaging could become a valuable tool in solving this problem. Hyperspectral images of 11 histologically diagnosed carcinomas (six basal cell carcinomas and five squamous cell carcinomas) were acquired prior clinical evaluation and surgical excision. The hyperspectral data were then analyzed using a newly developed method for delineating skin cancer tumor margins. This proposed method is based on a segmentation process of the hyperspectral images into regions with similar spectral and spatial features, followed by a machine learning-based data classification process resulting in the generation of classification maps illustrating tumor margins. The Spectral Angle Mapper classifier was used in the data classification process using approximately 37% of the segments as the training sample, the rest being used for testing. The receiver operating characteristic was used as the method for evaluating the performance of the proposed method and the area under the curve as a metric. The results revealed that the performance of the method was very good, with median AUC values of 0.8014 for SCCs, 0.8924 for BCCs, and 0.8930 for normal skin. With AUC values above 0.89 for all types of tissue, the method was considered to have performed very well. In conclusion, hyperspectral imaging can become an objective aid in the preoperative evaluation of carcinoma margins.

5.
Article in English | MEDLINE | ID: mdl-38707637

ABSTRACT

During surgery of delicate regions, differentiation between nerve and surrounding tissue is crucial. Hyperspectral imaging (HSI) techniques can enhance the contrast between types of tissue beyond what the human eye can differentiate. Whereas an RGB image captures 3 bands within the visible light range (e.g., 400 nm to 700 nm), HSI can acquire many bands in wavelength increments that highlight regions of an image across a wavelength spectrum. We developed a workflow to identify nerve tissues from other similar tissues such as fat, bone, and muscle. Our workflow uses spectral angle mapper (SAM) and endmember selection. The method is robust for different types of environment and lighting conditions. We validated our workflow on two samples of human tissues. We used a compact HSI system that can image from 400 to 1700 nm to produce HSI of the samples. On these two samples, we achieved an intersection-over-union (IoU) segmentation score of 84.15% and 76.73%, respectively. We showed that our workflow identifies nerve segments that are not easily seen in RGB images. This method is fast, does not rely on special hardware, and can be applied in real time. The hyperspectral imaging and nerve detection approach may provide a powerful tool for image-guided surgery.

6.
Mov Ecol ; 12(1): 33, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671527

ABSTRACT

BACKGROUND: Prey are more vulnerable during migration due to decreased familiarity with their surroundings and spatially concentrated movements. Predators may respond to increased prey vulnerability by shifting their ranges to match prey. Moose (Alces alces) and white-tailed deer (Odocoileus virginianus) are primary gray wolf (Canis lupus) prey and important subsistence species for Indigenous communities. We hypothesized wolves would increase use of ungulate migration corridors during migrations and predicted wolf distributions would overlap primary available prey. METHODS: We examined seasonal gray wolf, moose, and white-tailed deer movements on and near the Grand Portage Indian Reservation, Minnesota, USA. We analyzed GPS collar data during 2012-2021 using Brownian bridge movement models (BBMM) in Migration Mapper and mechanistic range shift analysis (MRSA) to estimate individual- and population-level occurrence distributions and determine the status and timing of range shifts. We estimated proportional overlap of wolf distributions with moose and deer distributions and tested for differences among seasons, prey populations, and wolf sex and pack affiliations. RESULTS: We identified a single migration corridor through which white-tailed deer synchronously departed in April and returned in October-November. Gray wolf distributions overlapped the deer migration corridor similarly year-round, but wolves altered within-range distributions seasonally corresponding to prey distributions. Seasonal wolf distributions had the greatest overlap with deer during fall migration (10 October-28 November) and greatest overlap with moose during summer (3 May-9 October). CONCLUSIONS: Gray wolves did not increase their use of the white-tailed deer migration corridor but altered distributions within their territories in response to seasonal prey distributions. Greater overlap of wolves and white-tailed deer in fall may be due to greater predation success facilitated by asynchronous deer migration movements. Greater summer overlap between wolves and moose may be linked to moose calf vulnerability, American beaver (Castor canadensis) co-occurrence, and reduced deer abundance associated with migration. Our results suggest increases in predation pressure on deer in fall and moose in summer, which can inform Indigenous conservation efforts. We observed seasonal plasticity of wolf distributions suggestive of prey switching; that wolves did not exhibit migratory coupling was likely due to spatial constraints resulting from territoriality.

7.
Sensors (Basel) ; 24(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38544028

ABSTRACT

The imaging quality of the Mapping Imaging Spectrometer (IMS) is crucial for spectral identification and detection performance. In IMS, the image mapper significantly influences the imaging quality. Traditional image mappers utilize a single-point diamond machining process. This process leads to inevitable edge eating phenomena that further results in noticeable deficiencies in imaging, impacting spectral detection performance. Therefore, we propose a manufacturing process for the image mapper based on ultra-thin layered glass. This process involves precision polishing of ultra-thin glass with two-dimensional angles, systematically assembling it into an image mapper. The surface roughness after coating is generally superior to 10 nm, with a maximum angle deviation of less than 3'. This results in high mapping quality. Subsequently, a principle verification experimental system was established to conduct imaging tests on real targets. The reconstructed spectrum demonstrates excellent alignment with the results obtained from the Computed Tomography Imaging Spectrometer (CTIS). We thereby validate that this approach effectively resolves the issues associated with edge eating (caused by traditional single-point diamond machining), and leads to improved imaging quality. Also when compared to other techniques (like two-photon polymerization (2PP)), this process demonstrates notable advantages such as simplicity, efficiency, low processing costs, high fault tolerance, and stability, showcasing its potential for practical applications.

8.
Entropy (Basel) ; 26(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38248193

ABSTRACT

Topological data analysis (TDA) is a recent approach for analyzing and interpreting complex data sets based on ideas a branch of mathematics called algebraic topology. TDA has proven useful to disentangle non-trivial data structures in a broad range of data analytics problems including the study of cardiovascular signals. Here, we aim to provide an overview of the application of TDA to cardiovascular signals and its potential to enhance the understanding of cardiovascular diseases and their treatment in the form of a literature or narrative review. We first introduce the concept of TDA and its key techniques, including persistent homology, Mapper, and multidimensional scaling. We then discuss the use of TDA in analyzing various cardiovascular signals, including electrocardiography, photoplethysmography, and arterial stiffness. We also discuss the potential of TDA to improve the diagnosis and prognosis of cardiovascular diseases, as well as its limitations and challenges. Finally, we outline future directions for the use of TDA in cardiovascular signal analysis and its potential impact on clinical practice. Overall, TDA shows great promise as a powerful tool for the analysis of complex cardiovascular signals and may offer significant insights into the understanding and management of cardiovascular diseases.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123906, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38277781

ABSTRACT

Cell culture media are essential for large-scale recombinant protein production using mammalian cell cultures. The composition and quality of media significantly impact cell growth and product formation. Analyzing media poses challenges due to complex compositions and undisclosed exact compositions. Traditional methods like NMR and chromatography offer sensitivity but require time-consuming sample preparation and lack spatial information. Raman chemical mapping characterizes solids, but its use in cell culture media analysis is limited so far. We present a chemometric evaluation for Raman maps to qualify and quantify media components, evaluate powder homogeneity, and perform lot-to-lot comparisons. Three lots of a marketed cell culture media powder were measured with Raman mapping technique. Chemometrics techniques have outlined a strategy to extract information from complex data. First, a spectral library has been structured. In addition to the 23 spectra for presumed ingredients, we obtained another 9 pure components with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Then the Spectral Angle Mapper-Orthogonal Projection (SAM-OP) algorithm revealed whether references actually occur in the mapped media powders. Finally, a quantification was provided by Classical Least Squares (CLS) modelling. Quantities of 18 significant amino acids mostly correlated with the reference method. The proposed method can be generally applied even for such complicated samples. Leveraging Raman mapping and innovative chemometric methods enhance recombinant protein production by improving the understanding of the spatial distribution and composition of cell culture media in mammalian cell cultivations.


Subject(s)
Cell Culture Techniques , Microscopy , Animals , Powders , Cell Culture Techniques/methods , Recombinant Proteins , Least-Squares Analysis , Spectrum Analysis, Raman/methods , Culture Media/chemistry , Multivariate Analysis , Mammals
10.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37904918

ABSTRACT

Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from Topological Data Analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even though it is a relatively established tool within the field of Topological Data Analysis, Mapper results are highly impacted by parameter selection. Given that non-invasive human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold standards exist regarding "true" state transitions, we argue for a thorough examination of Mapper parameter choices to better reveal their impact. Using synthetic data (with known transition structure) and real fMRI data, we explore a variety of parameter choices for each Mapper step, thereby providing guidance and heuristics for the field. We also release our parameter-exploration toolbox as a software package to make it easier for scientists to investigate and apply Mapper on any dataset.

11.
Netw Neurosci ; 7(2): 431-460, 2023.
Article in English | MEDLINE | ID: mdl-37397880

ABSTRACT

Characterizing large-scale dynamic organization of the brain relies on both data-driven and mechanistic modeling, which demands a low versus high level of prior knowledge and assumptions about how constituents of the brain interact. However, the conceptual translation between the two is not straightforward. The present work aims to provide a bridge between data-driven and mechanistic modeling. We conceptualize brain dynamics as a complex landscape that is continuously modulated by internal and external changes. The modulation can induce transitions between one stable brain state (attractor) to another. Here, we provide a novel method-Temporal Mapper-built upon established tools from the field of topological data analysis to retrieve the network of attractor transitions from time series data alone. For theoretical validation, we use a biophysical network model to induce transitions in a controlled manner, which provides simulated time series equipped with a ground-truth attractor transition network. Our approach reconstructs the ground-truth transition network from simulated time series data better than existing time-varying approaches. For empirical relevance, we apply our approach to fMRI data gathered during a continuous multitask experiment. We found that occupancy of the high-degree nodes and cycles of the transition network was significantly associated with subjects' behavioral performance. Taken together, we provide an important first step toward integrating data-driven and mechanistic modeling of brain dynamics.

12.
J Therm Biol ; 115: 103613, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37437372

ABSTRACT

Understanding where and why organisms are experiencing thermal and hydric stress is critical for predicting species' responses to climate change. Biophysical models that explicitly link organismal functional traits like morphology, physiology, and behavior to environmental conditions can provide valuable insight into determinants of thermal and hydric stress. Here we use a combination of direct measurements, 3D modeling, and computational fluid dynamics to develop a detailed biophysical model of the sand fiddler crab, Leptuca pugilator. We compare the detailed model's performance to a model using a simpler ellipsoidal approximation of a crab. The detailed model predicted crab body temperatures within 1 °C of observed in both laboratory and field settings; the ellipsoidal approximation model predicted body temperatures within 2 °C of observed body temperatures. Model predictions are meaningfully improved through efforts to incorporate species-specific morphological properties rather than relying on simple geometric approximations. Experimental evaporative water loss (EWL) measurements indicate that L. pugilator can modify its permeability to EWL as a function of vapor density gradients, providing novel insight into physiological thermoregulation in the species. Body temperature and EWL predictions made over the course of a year at a single site demonstrate how such biophysical models can be used to explore mechanistic drivers and spatiotemporal patterns of thermal and hydric stress, providing insight into current and future distributions in the face of climate change.


Subject(s)
Brachyura , Animals , Body Temperature , Body Temperature Regulation , Brachyura/physiology , Species Specificity , Temperature , Water
13.
PeerJ ; 11: e15721, 2023.
Article in English | MEDLINE | ID: mdl-37489123

ABSTRACT

In recent years, the focus of the functional connectivity community has shifted from stationary approaches to the ones that include temporal dynamics. Especially, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)) with high temporal resolution and good spatial coverage have made it possible to measure the fast alterations in the neural activity in the brain during ongoing cognition. In this article, we analyze dynamic brain reconfiguration using MEG images collected from subjects during the rest and the cognitive tasks. Our proposed topological data analysis method, called Mapper, produces biomarkers that differentiate cognitive tasks without prior spatial and temporal collapse of the data. The suggested method provides an interactive visualization of the rapid fluctuations in electrophysiological data during motor and cognitive tasks; hence, it has the potential to extract clinically relevant information at an individual level without temporal and spatial collapse.


Subject(s)
Brain , Magnetoencephalography , Humans , Electroencephalography , Cognition , Data Analysis
14.
Ecol Evol ; 13(5): e10140, 2023 May.
Article in English | MEDLINE | ID: mdl-37261321

ABSTRACT

Habitat fragmentation and isolation threaten the survival of several wide-ranging species, such as tigers, through increased risk from diseases, disasters, climate change, and genetic depression. Identification of the habitat most likely to achieve connectivity among protected areas is vital for the long-term persistence of tigers. We aimed to improve the mapping of potential transfrontier protected area corridors for tigers by connecting sites within the Terai Arc Landscape in Nepal and to those in India, highlighting targeted conservation actions needed along these corridors to maintain long-term connectivity. We used least-cost corridor modeling and circuit theory to identify potential corridors and bottlenecks in the study area. The landscape's resistance to tigers' movement was gathered from expert opinions to inform corridor modeling. We identified nine potential tiger corridors in the Terai Arc Landscape-Nepal that aligned strongly with the remaining intact habitats of the Siwalik landscape, which could facilitate tiger movement. Banke-Bardia and Chitwan-Parsa-Valimiki complexes and Lagga-Bhagga and Khata corridors were identified as high-priority conservation cores and corridors. While our model exhibited congruence with most established corridors in the landscape, it has identified the need to enhance existing corridors to improve landscape connectivity. Several pinch points posing an increased risk to connectivity were identified. Most of these were located near the protected area boundaries and along the Nepal-India border. The Siwalik landscape holds the key to long-term connectivity in the study area; however, immediate conservation attention is needed, particularly at pinch points, to secure this connectivity for tigers. Validation of identified corridors through empirical research and their conservation is a priority.

15.
Front Aging Neurosci ; 15: 1174022, 2023.
Article in English | MEDLINE | ID: mdl-37077502

ABSTRACT

[This corrects the article DOI: 10.3389/fnagi.2023.1047017.].

16.
Forensic Sci Int ; 347: 111688, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068374

ABSTRACT

Similarity algorithms are commonly used in soil forensic applications to help identify similar samples from an existing reference library as possible source locations of unknown target samples. These algorithms are well-suited to compare soil spectra. However, different similarity algorithms may lead to different clusters of similar samples, and thus different strengths of evidence in forensic investigations. To quantify this, we conducted a study to evaluate the influence of seven similarity algorithms on soil provenance, using as a sample set a soil spectral library consisting of 280 soil profiles from Anhui Province, China. This library includes three spatial scales of datasets: provincial (DSp), county (DSc) and field (DSf). A set of ten samples covering a wide range of spectra variations were selected from the DSf dataset as the "unknown" samples, with the remaining being used as the reference samples. This study aimed to: (1) evaluate how several commonly-used similarity algorithms, namely Euclidean distance (ED), Mahalanobis distance (MD), Spectral angle mapper (SAM), and Spectral information divergence (SID), as well as variants of several of these measured in standardized principal component space computed from the spectra (ED_PCA, MD_PCA and SAM_PCA), influence the identification of the matched similar samples; (2) determine the overlap in sample selection between different similarity algorithms; (3) propose best practices for similarity algorithms applied to soil forensic analysis using spectroscopy. The use of different similarity algorithms did influence the selection of most similar samples. The similarity algorithms calculated in PC space (ED_PCA, MD_PCA and SAM_PCA) performed slightly better than their counterparts calculated in spectral space. Due to the availability of a detailed spectral library, regardless of the different similarity algorithms used, the matched most similar samples were all located close to the unknowns, mostly within 3 km, with one exception. That is, the varied choices of different similarity algorithms hardly influenced the conclusion of soil provenance in this case. In general, MD_PCA, SAM and ED were the best similarity algorithms overall. However, since there was no single best algorithms for all cases, we recommend the joint use of MD_PCA, SAM and ED as an ensemble. Indications of possible sample provenance from these similarity measured can be useful evidence to complement evidence from other methods in a forensic investigation.

17.
Front Aging Neurosci ; 15: 1047017, 2023.
Article in English | MEDLINE | ID: mdl-36896420

ABSTRACT

Background: Parkinson's disease (PD) is a neurodegenerative disease with a broad spectrum of motor and non-motor symptoms. The great heterogeneity of clinical symptoms, biomarkers, and neuroimaging and lack of reliable progression markers present a significant challenge in predicting disease progression and prognoses. Methods: We propose a new approach to disease progression analysis based on the mapper algorithm, a tool from topological data analysis. In this paper, we apply this method to the data from the Parkinson's Progression Markers Initiative (PPMI). We then construct a Markov chain on the mapper output graphs. Results: The resulting progression model yields a quantitative comparison of patients' disease progression under different usage of medications. We also obtain an algorithm to predict patients' UPDRS III scores. Conclusions: By using mapper algorithm and routinely gathered clinical assessments, we developed a new dynamic models to predict the following year's motor progression in the early stage of PD. The use of this model can predict motor evaluations at the individual level, assisting clinicians to adjust intervention strategy for each patient and identifying at-risk patients for future disease-modifying therapy clinical trials.

18.
Comput Biol Med ; 155: 106640, 2023 03.
Article in English | MEDLINE | ID: mdl-36774889

ABSTRACT

Deciphering information hidden in the gene expression assays for identifying disease subtypes has significant importance in precision medicine. However, computational limitations thwart this process due to the intricacy of the biological networks and the curse of dimensionality of gene expression data. Therefore, clustering in such scenarios often becomes the first choice of exploratory data analysis to identify natural structures and intrinsic patterns in the data. However, sparse and high dimensional nature of omics data prevents conventional clustering algorithms to discover subtypes that are clinically relevant and statistically significant. Hence, non-linear dimensionality reduction techniques coupled with clustering in such scenarios often becomes imperative to improve the clustering results. In this study, we present a robust pipeline to discover disease subtypes with clinical relevance. Specifically, we focus on discovering patient sub-groups that have a residual life patterns remarkably different from other sub-groups. This is significant because by refining prognosis, subtyping can reduce uncertainty in approximating patients expected outcome. The methodology present is based on robust correlation estimation, UMAP- a non-linear dimensionality reduction method and mapper- a tool from topology. Notably, we suggest a method for improving the robustness of the correlation matrix of gene expression data for improving the clustering results. The performance of the model is evaluated by applying to five cancer datasets obtained through TCGA and comparisons are performed with some state of the art methods of NEMO, RSC-OTRI and SNF with regard to log-rank test and Restricted Life Expectancy Difference. For example in GBM dataset, the minimum separation for any two discovered subtypes is 221 days which is significantly higher than the other methodologies. We also compared the results without using the robust correlation based estimate and observed that robust correlation improves separability between survival curves significantly. From the results we infer that our methodology performs better compared to other methodologies with regard to separating survival curves of patient sub-groups despite using single omics profiles of patients compared to multiple omics profiles of SNF and NEMO. Pathway over-representation analysis is performed on the final clustering results to investigate the biological underpinnings characterizing each subtype.


Subject(s)
Algorithms , Neoplasms , Humans , Cluster Analysis , Neoplasms/genetics , Precision Medicine , Data Analysis
19.
Diagnostics (Basel) ; 13(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36673005

ABSTRACT

PROBLEM: Similarity measures are widely used as an approved method for spectral discrimination or identification with their applications in different areas of scientific research. Even though a range of works have been presented, only a few showed slightly promising results for human tissue, and these were mostly focused on pathological and non-pathological tissue classification. METHODS: In this work, several spectral similarity measures on hyperspectral (HS) images of in vivo human tissue were evaluated for tissue discrimination purposes. Moreover, we introduced two new hybrid spectral measures, called SID-JM-TAN(SAM) and SID-JM-TAN(SCA). We analyzed spectral signatures obtained from 13 different human tissue types and two different materials (gauze, instruments), collected from HS images of 100 patients during surgeries. RESULTS: The quantitative results showed the reliable performance of the different similarity measures and the proposed hybrid measures for tissue discrimination purposes. The latter produced higher discrimination values, up to 6.7 times more than the classical spectral similarity measures. Moreover, an application of the similarity measures was presented to support the annotations of the HS images. We showed that the automatic checking of tissue-annotated thyroid and colon tissues was successful in 73% and 60% of the total spectra, respectively. The hybrid measures showed the highest performance. Furthermore, the automatic labeling of wrongly annotated tissues was similar for all measures, with an accuracy of up to 90%. CONCLUSION: In future work, the proposed spectral similarity measures will be integrated with tools to support physicians in annotations and tissue labeling of HS images.

20.
J Anim Ecol ; 92(3): 619-634, 2023 03.
Article in English | MEDLINE | ID: mdl-36527180

ABSTRACT

Climate warming creates energetic challenges for endothermic species by increasing metabolic and hydric costs of thermoregulation. Although endotherms can invoke an array of behavioural and physiological strategies for maintaining homeostasis, the relative effectiveness of those strategies in a climate that is becoming both warmer and drier is not well understood. In accordance with the heat dissipation limit theory which suggests that allocation of energy to growth and reproduction by endotherms is constrained by the ability to dissipate heat, we expected that patterns of habitat use by large, heat-sensitive mammals across multiple scales are critical for behavioural thermoregulation during periods of potential heat stress and that they must invest a large portion of time to maintain heat balance. To test our predictions, we evaluated mechanisms underpinning the effectiveness of bed sites for ameliorating daytime heat loads and potential heat stress across the landscape while accounting for other factors known to affect behaviour. We integrated detailed data on microclimate and animal attributes of moose Alces alces, into a biophysical model to quantify costs of thermoregulation at fine and coarse spatial scales. During summer, moose spent an average of 67.8% of daylight hours bedded, and selected bed sites and home ranges that reduced risk of experiencing heat stress. For most of the day, shade could effectively mitigate the risk of experiencing heat stress up to 10°C, but at warmer temperatures (up to 20°C) wet soil was necessary to maintain homeostasis via conductive heat loss. Consistent selection across spatial scales for locations that reduced heat load underscores the importance of the thermal environment as a driver of behaviour in this heat-sensitive mammal. Moose in North America have long been characterized as riparian-obligate species because of their dependence on woody plant species for food. Nevertheless, the importance of dissipating endogenous heat loads conductively through wet soil suggests riparian habitats also are critical thermal refuges for moose. Such refuges may be especially important in the face of a warming climate in which both high environmental temperatures and drier conditions will likely exacerbate limits to heat dissipation, especially for large, heat-sensitive animals.


Subject(s)
Deer , Ecosystem , Animals , Seasons , Temperature , Deer/physiology , Soil , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL