Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.225
Filter
1.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095193

ABSTRACT

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Cities , Atmosphere/chemistry , Particle Size
2.
Mar Pollut Bull ; 207: 116912, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217870

ABSTRACT

Honda Bay is considered as one of the mercury hotspots in the world due to its proximity to the abandoned Palawan Quicksilver Mine. In this study, a detailed sediment sampling conducted in between 2021 and 2022 where a total of 166 sediment samples were collected along the coast and analyzed for total mercury (THg) concentration. The study assessed mercury toxicity using the geoaccumulation index and compared Hg levels to sediment quality guidelines. The findings revealed a wide range of THg concentrations, from 0.0040 to 11.4702 mg/kg, with hotspots identified at the Honda Bay wharf and Tagburos River mouth. Mercury spreads to a large coastal area brought by tidal currents and the wave energy actions. The geoaccumulation index indicated moderate to strong Hg contamination in the vicinity of the hotspots and around 24.7-36.1 % of samples exceeded the sediment quality guidelines suggesting adverse biological effects in aquatic biota will frequently occur.

3.
J Hazard Mater ; 479: 135647, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39217928

ABSTRACT

In French Polynesia, the pearl farming industry relies entirely on collecting natural spat using a shade-mesh collector, which is reported to contribute to both plastic pollution and the release of toxic chemicals. With the aim of identifying more environment-friendly collectors, this study investigates the chemical toxicity of shade-mesh (SM) and alternative materials, including reusable plates (P), a newly developed biomaterial (BioM) and Coconut coir geotextile (Coco), on the embryo-larval development of Pinctada margaritifera. Embryos were exposed during 48 h to four concentrations (0, 0.1, 10 and 100 g L-1) of leachates produced from materials. Chemical screening of raw materials and leachates was performed to assess potential relationships with the toxicity observed on D-larvae development. Compared to the other tested materials, results demonstrated lower levels of chemical pollutants in BioM and no toxic effects of its leachates at 10 g L-1. No toxicity was observed at the lowest tested concentration (0.1 g L-1). These findings offer valuable insights for promoting safer spat collector alternatives such as BioM and contribute to the sustainable development of pearl farming.

4.
Sci Total Environ ; 952: 175934, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218101

ABSTRACT

Growing concerns have emerged over the combined effects of multiple stressors on ecosystems. Empirical evidence shows that the sensitivity of aquatic invertebrates to insecticides varies under thermally fluctuating conditions. Additionally, field surveys in estuarine areas of western Japan confirmed the presence of juvenile kuruma prawns (Penaeus japonicus) carrying the white spot syndrome virus (WSSV). Given the potential of co-exposure to multiple stressors, we performed a combined exposure experiment using a full-factorial design with three stressors: WSSV infection (presence or absence: initial 2 h exposure), fipronil (insecticide) exposure (0 or 0.1 µg/L: 14 d exposure), and temperature (20, 25, or 30 °C). We observed the highest mortality (75 %) in the WSSV + Fipronil treatment at 30 °C, with the associated specimens showing significant changes in the internal load of WSSV and concentrations of fipronil and its metabolite, fipronil sulfone. Severe perturbations of metabolites associated with increased energy expenditure and fatty acid utilization have been identified as potential factors underlying lethality in juvenile kuruma prawns. The results demonstrate that WSSV infection increases the susceptibility of thermally stressed juvenile kuruma prawns to fipronil. Therefore, further studies are required to determine the combined effects of multiple stressors in environmentally relevant scenarios on juvenile kuruma prawns as well as in estuarine ecosystems.

5.
Sci Total Environ ; 952: 175946, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218111

ABSTRACT

Marine dinoflagellates are increasingly affected by ongoing global climate changes. While understanding of their physiological and molecular responses to individual stressors anticipated in the future ocean has improved, their responses to multiple concurrent stressors remain poorly understood. Here, we investigated the individual and combined effects of elevated temperature (26 °C relative to 22 °C), increased pCO2 (1000 µatm relative to 400 µatm), and high nitrogen: phosphorus ratio (180:1 relative to 40:1) on a harmful algal bloom-causing dinoflagellate Prorocentrum obtusidens under short-term (28 days) exposure. Elevated temperature was the most dominant stressor affecting P. obtusidens at physiological and transcriptomic levels. It significantly increased cell growth rate and maximum photosynthetic efficiency (Fv/Fm), but reduced chlorophyll a, particulate organic carbon, particulate organic nitrogen, and particulate organic phosphorus. Elevated temperature also interacted with other stressors to produce synergistic positive effects on cell growth and Fv/Fm. Transcriptomic analysis indicated that elevated temperature promoted energy production by enhancing glycolysis, tricarboxylic acid cycle, and nitrogen and carbon assimilation, which supported rapid cell growth but reduced material storage. Increased pCO2 enhanced the expression of genes involved in ionic acid-base regulation and oxidative stress resistance, whereas a high N:P ratio inhibited photosynthesis, compromising cell viability, although the effect was alleviated by elevated temperature. The combined effect of these multiple stressors resulted in increased energy metabolism and up-regulation of material-synthesis pathways compared to the effect caused by elevated temperature alone. Our results underscore ocean warming as the predominant stressor for dinoflagellates and highlight the complex, synergistic effects of multi-stressors on dinoflagellates.

6.
Chemosphere ; 364: 143230, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222693

ABSTRACT

Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.

7.
Mol Divers ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225905

ABSTRACT

NUDIX hydrolase 5 (NUDT5) is an enzyme involved in the hydrolysis of nucleoside diphosphates linked to other moieties, such as ADP-ribose. This cofactor is vital in redox reactions and is essential for the activity of sirtuins and poly(ADP-ribose) polymerases, which are involved in DNA repair and genomic stability. It has been shown that NUDT5 activity can also influence NAD+ homeostasis, thereby affecting cancer cell metabolism and survival. In this regard, the discovery of NUDT5 inhibitors has emerged as a potential therapeutic approach in cancer treatment. In this study, we conducted a high-throughput virtual screening of marine bacterial compounds against the NUDT5 enzyme and four molecules were selected based on their docking scores. These compounds established strong interactions within the NUDT5 active site, with molecular analysis highlighting the key role of Trp28A and Trp46B residues. Molecular dynamics simulations over 200 ns indicated a stable behavior, in association with root mean square deviation values always below 3 Å, suggesting conformational stability. Free energy landscape analysis further supported their potential as NUDT5 inhibitors, offering avenues for novel therapeutic strategies against NUDT5-associated breast cancer.

8.
Ambio ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225976

ABSTRACT

This study explored the transformative journey of community-based natural resource management (CBNRM) in the Bay Islands National Marine Park, Honduras, revealing the interplay of cooperation, funding, and communication in fostering successful conservation initiatives. Using a mixed-method approach, we investigated the historical and legislative process and enabling conditions that led to the transition to CBNRM, based on Gruber's 12 key principles. In regards to the present CBNRM system, we looked at its strengths, its challenges, and whether its functioning is seen as satisfying by local resource-users. Findings showed that key CBNRM principles-including an enabling environment, conflict resolution, research-based decision-making, public trust, and monitoring-fostered the transition. Furthermore, satisfaction with reef management and perceived patrol effectiveness, which are pivotal aspects in CBNRM, exceeded 70% in Roatan. Challenges such as strengthening local institutions and enhancing compliance were identified. Nonetheless, co-managers are actively working to resolve these challenges by focusing on enforcement, diverse funding acquisition mechanisms and community participation. The study underscores the pivotal role of local NGOs and collaborative committees in facilitating successful CBNRM. By providing evidence-based insights, we highlight the efficacy of multilevel, co-management models in resource management and emphasize the value of adaptable strategies. These findings contribute to a deeper understanding of CBNRM dynamics in Latin America and the Caribbean, which may ultimately foster successful conservation initiatives in the Global South.

9.
Mar Pollut Bull ; 208: 116957, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260145

ABSTRACT

In this study, microplastic concentrations in the southeastern coastal regions of Japan were measured along the northward ocean current at seven stations from Okinawa to Tokai region. Concentrations ranged from 0.014 to 0.094 pieces/m3, except for a station near the Bungo Channel mouth, which had 0.723 pieces/m3. Polystyrene (PS) foam was most prevalent near the east side of Kyushu, suggesting origination from nearby coastal areas. Fragmentation levels were higher in the Tokai region. In addition, carbonyl index (CI) of polyethylene (PE) microplastics increased northward, indicating northward movement from southern regions. Standard PE microplastics showed chemical treatment does not significantly alter CI values. Further spectral analysis suggested potential oxidation of polypropylene (PP) and PS foam by chemical treatment. This study provides a comprehensive understanding of the abundance, distribution, and characteristics of microplastics in the southeastern coastal regions of Japan in the northwest Pacific, enhancing the understanding of environmental fate of microplastics.

10.
Biotechnol Adv ; : 108449, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260778

ABSTRACT

This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.

11.
Anim Nutr ; 18: 177-190, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39263442

ABSTRACT

Recent studies have shown that age-related aging evolution is accompanied by imbalances in intestinal homeostasis. Marine red yeast (MRY) is a functional probiotic that has been shown to have antioxidant, immune and other properties. Therefore, we chose 900 healthy Hy-Line Brown hens at 433 d old as the research subjects and evaluated the correlation between intestinal health, laying performance, and egg quality in aged hens through the supplementation of MRY. These laying hens were assigned into 5 groups and received diet supplementation with 0%, 0.5%, 1.0%, 1.5%, and 2% MRY for 12 weeks. The results showed that MRY supplementation increased egg production rate, average egg weight, and egg quality, and decreased feed conversion ratio and daily feed intake (P < 0.05). The MRY supplement improved antioxidant indicators such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), stimulated villus height, and increased the villus height to crypt depth ratio (V/C ratio) in the intestine (P < 0.05). It also regulated the expression of intestinal inflammatory factors (transforming growth factor-ß [TGF-ß], interleukin [IL]-1ß, IL-8, tumor necrosis factor-α [TNF-α]) while increasing serum immunoglobulin G (IgG) levels (P < 0.05). Furthermore, MRY supplementation upregulated the mRNA expression of tight junction proteins (occludin and zonula occludens-1 [ZO-1]), anti-apoptotic gene (Bcl-2), and autophagy-related proteins (beclin-1 and light chain 3I [LC3I]) in the intestine (P < 0.05). The MRY supplement also led to an increase in the concentration of short-chain fatty acids in the cecum, and the relative abundance of the phylum Bacteroidetes, and genera Bacteroides and Rikenellaceae_RC9_gut_group. The LEfSe analysis revealed an enrichment of Sutterella and Akkermansia muciniphila. In conclusion, the results of this experiment indicated that the additional supplementation of MRY can improve the production performance of laying hens and may contribute to the restoration and balance of intestinal homeostasis, which supports the application potential of MRY as a green and efficient feed additive for improving the laying performance in chickens.

12.
Swiss J Palaeontol ; 143(1): 32, 2024.
Article in English | MEDLINE | ID: mdl-39263671

ABSTRACT

Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was originally described on the basis of a single complete fossil specimen excavated near Besano (Italy). However, a recent taxonomic revision and re-examination of the cranial osteology allowed for the assignment of five additional specimens to the taxon. Here, we analyse, describe and discuss the postcranial anatomy of Besanosaurus leptorhynchus in detail. The size of the specimens examined herein ranged from slightly more than one meter to eight meters. Overall, several diagnostic character states for this taxon are proposed, demonstrating a mosaic of plesiomorphic and derived features. This is best exemplified by the limbs, which show very rounded elements in the forelimbs, and pedal phalanges with retained rudimentary shafts. We suggest that the widely spaced phalanges in the forefins of Besanosaurus leptorhynchus were embedded in a fibrocartilage-rich connective tissue, like in modern cetaceans. We also review the similarities of Besanosaurus with Pessopteryx and Pessosaurus, allowing us to conclude that Besanosaurus is not a junior synonym of either of the two taxa. Lastly, to test the swimming capabilities of Besanosaurus leptorhynchus, we expanded on a previously published study focussing on reconstructing the swimming styles of ichthyosaurs. Besanosaurus leptorhynchus was found to possess a peculiar locomotory mode, somewhat intermediate between anguilliform swimmers, such as Cymbospondylus and Utatsusaurus, and some shastasaur-grade (e.g., Guizhouichthyosaurus) and early-diverging euichthyosaurian (e.g., Californosaurus) ichthyosaurs. Based on our results, we furthermore suggest that mixosaurids acquired their characteristic body profile (dorsal fin and forefins that are distinctly enlarged compared to the hindfins) independently and convergently to the one that later appeared in Parvipelvia. Moreover, the different swimming styles inferred for Cymbospondylus, Mixosauridae, and Besanosaurus strengthen the earlier hypothesis of niche partitioning among these three distinct ichthyosaur taxa from the Besano Formation. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00330-9.

13.
Mol Biotechnol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264528

ABSTRACT

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.

14.
Chemosphere ; 364: 143274, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243896

ABSTRACT

Addressing the critical health concerns posed by domoic acid (DA), a neurotoxic compound produced by toxic marine algae and bioaccumulated in shellfish, necessitates the development of a rapid, precise, and robust detection system. Traditional DA detection methods have stability and sensitivity issues, which hinder effective toxin detection. To overcome these limitations, we developed a novel direct competitive enzyme-linked immunosorbent assay (dc-ELISA) platform that utilizes peptide-immobilized magnetic beads (MGBs/peptide). The affinity peptides identified through phage display and chemically synthesized with biotin labels present an innovative alternative to conventional antibodies for ELISA applications. Streptavidin-modified MGBs were used as the bioreceptor carriers to facilitate magnetic separation and simplify sample preparation, making the MGB/peptide-based dc-ELISA platform an ideal tool for comprehensive monitoring efforts. The developed platform exhibits a detection range of 0.5-10 ng mL-1 and a low limit of detection of 0.29 ng mL-1, offering enhanced sensitivity and cost-effectiveness. Moreover, our developed dc-ELISA demonstrated a high recovery rate when validated with DA-spiked CRM-mussel samples. This method overcomes the limitations of traditional detection techniques and offers a scalable and efficient approach to marine toxin surveillance with improved marine environmental monitoring and public health management.

15.
Sci Total Environ ; 953: 176042, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244039

ABSTRACT

The constant production of plastic and incessant growth of waste pollution continues to alter the marine environment from the coasts and surface waters to the deep sea. The quantification and investigation of macrolitter on the vast seabed of the ocean are challenging tasks that must be undertaken to elucidate the impact of anthropogenic activity on the marine environment and facilitate subsequent implementation of legally binding waste management regulations. In this study, we analyzed >60,000 images collected during 84 dives surveying 62.1 km of seabed in the eastern Red Sea to quantify the abundance and density of seafloor macrolitter. The surveyed depth of the seabed varied between 35 and 2415 m, and litter was observed at depths ranging from 93 to 2415 m. The litter density varied between 0 and 73,798 items km-2, with the mean (± SE) and median densities of 4069 ± 1188 and 1371 items km-2, respectively. Plastic was the main litter category, comprising 46 % of all litter. The density of litter was higher at deeper depths (>1400 m) and increased significantly at distances farther from the shore. The results of this study suggest that maritime traffic and the possible direct litter discharge from vessels are the main anthropogenic sources of seafloor litter in the eastern Red Sea. Thus, we emphasize the urgency of conservation efforts and strict waste regulations to preserve the marine ecosystem of the Red Sea.

16.
Sci Rep ; 14(1): 21024, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251625

ABSTRACT

A new conducting polymer of the cellulose acetate poly acrylonitrile (CAPA)-SiC composite was produced using an in situ oxidative polymerization technique in an aqueous medium. SiC was synthesized from Cinachyrella sp. as a source of carbon and silicon at 1200 °C under an argon atmosphere via a catalytic reduction process. The structure and morphology of the CAPA-SiC composite were characterized using surface area studies (BET), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), and surface morphology (SEM & TEM). To protect copper, the produced CAPA-SiC composite was mixed with commercial epoxy paint using a casting technique, and the copper surface was coated with the three components of the CAPA-SiC/epoxy paint mixture. The corrosion inhibition improvement of the CAPA-SiC/paint coating was assessed using electrochemical impedance spectroscopy followed by Tafel polarization measurements in a 3.5 wt% NaCl solution. The corrosion protection ability of the CAPA-SiC/epoxy coating was found to be outstanding at 97.4% when compared to that of a CAPA/paint coating. SEM and XRD were used to illustrate the coating on the copper surface.

17.
Sci Rep ; 14(1): 20947, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251772

ABSTRACT

Seal lice, unique among insects, show remarkable adaptability to the extreme conditions of the deep sea. Evolving with their seal and sea lion hosts, they have managed to tolerate hypoxia, high salinity, low temperature, and elevated hydrostatic pressure. Given the diving capabilities of their mammalian hosts, which can reach depths of hundreds to thousands of meters, our study examines the morphological variation among closely related seal lice species infesting hosts with different maximum diving depths. In particular, our research reveals a significant morphological difference between lice associated with regular and deep-diving hosts, where lice from deep-diving hosts tend to be rounder. This could be an adaptation to withstand the high hydrostatic pressures found in the deep ocean. The rounded shape optimizes the louse's ability to withstand external pressure by redistributing it over a larger ventral/dorsal plane. This in turn minimizes the internal energy required to support body deformations, thereby increasing the louse's resilience in the deep sea environment.


Subject(s)
Diving , Animals , Diving/physiology , Host-Parasite Interactions , Lice Infestations/parasitology , Lice Infestations/veterinary , Seals, Earless/parasitology , Seals, Earless/physiology , Sea Lions/parasitology , Sea Lions/physiology
18.
Article in English | MEDLINE | ID: mdl-39237464

ABSTRACT

Brown algae are one of the most abundant biomasses on Earth. To recycle them as blue carbon sources, an effective decomposition system is necessary. This study focused on microorganisms present in seawater that decompose brown algae which contain laminarin and alginate. Where Undaria and Sargassum spp. were present, genera Psychromonas, Psychrobacter, and Pseudoalteromonas were predominant in seawater, while genera Arcobacter and Fusobacterium increased in abundance during the process of decomposition. The inoculation of Undaria samples into laminarin-minimal media led to a predominance of Pseudoalteromonas species. A Pseudoalteromonas isolate, identified as Pseudoalteromonas distincta, possesses genes encoding a putative laminarinase, polysaccharide lyase family 6 (PL6) alginate lyases, and a PL7 alginate lyase. The culture media of P. distincta contained no monosaccharides, suggesting the rapid conversion of polysaccharides to metabolites. These findings indicated that Pseudoalteromonas species play a major role in the decomposition of brown algae and affect the microbiota associated with them.

19.
Mar Pollut Bull ; 207: 116940, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244891

ABSTRACT

Despite their global ban in 2001, persistent organic pollutants (POPs) remain detectable in marine species, posing ongoing environmental and health risks. Current use pesticides (CUPs) like chlorpyrifos and chlorothalonil, along with polycyclic aromatic hydrocarbons (PAHs), also contaminate coastal areas, affecting human health. This study assessed POPs, CUPs and PAHs in bivalves, gastropods, polychaetes, crustaceans, and echinoderms from an Atlantic Patagonian harbor. Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) ranged from

20.
J Comp Physiol B ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39245661

ABSTRACT

Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.

SELECTION OF CITATIONS
SEARCH DETAIL