Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters











Publication year range
1.
J Nanobiotechnology ; 22(1): 461, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090622

ABSTRACT

BACKGROUND: The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS: In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS: Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.


Subject(s)
B7-H1 Antigen , Click Chemistry , Immunotherapy , Pyroptosis , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Animals , Female , Immunotherapy/methods , Mice , Pyroptosis/drug effects , Humans , Cell Line, Tumor , Tumor Microenvironment/drug effects , Mice, Inbred BALB C , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Optical Imaging/methods , Prodrugs/chemistry , Prodrugs/pharmacology
2.
Adv Sci (Weinh) ; 11(36): e2402278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38953328

ABSTRACT

The development of innovative strategies for cell membranes engineering is of prime interest to explore and manipulate cell-cell interactions. Herein, an enzyme-sensitive recognition marker that can be introduced on cell surface via bioorthogonal chemistry is designed. Once functionalized in this fashion, the cells gain the ability to assemble with cell partners coated with the complementary marker through non-covalent click chemistry. The artificial cell adhesion induces natural biological processes associated with cell proximity such as inhibiting cancer cell proliferation and migration. On the other hand, the enzymatic activation of the stimuli-responsive marker triggers the disassembly of cells, thereby restoring the tumor cell proliferation and migration rates. Thus, the study shows that the ready-to-use complementary markers are valuable tools for controlling the formation and the breaking of bonds between cells, offering an easy way to investigate biological processes associated to cell proximity.


Subject(s)
Cell Communication , Cell Proliferation , Cell Communication/physiology , Humans , Cell Proliferation/physiology , Click Chemistry/methods , Cell Adhesion/physiology , Cell Movement/physiology , Cell Line, Tumor , Biomarkers/metabolism , Cell Membrane/metabolism
3.
Adv Funct Mater ; 34(17)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-39071865

ABSTRACT

Cardiac arrest (CA)-induced cerebral ischemia remains challenging with high mortality and disability. Neural stem cell (NSC) engrafting is an emerging therapeutic strategy with considerable promise that, unfortunately, is severely compromised by limited cell functionality after in vivo transplantation. This groundbreaking report demonstrates that metabolic glycoengineering (MGE) using the "Ac5ManNTProp (TProp)" monosaccharide analog stimulates the Wnt/ß-catenin pathway, improves cell adhesion, and enhances neuronal differentiation in human NSCs in vitro thereby substantially increasing the therapeutic potential of these cells. For the first time, MGE significantly enhances NSC efficacy for treating ischemic brain injury after asphyxia CA in rats. In particular, neurological deficit scores and neurobehavioral tests experience greater improvements when the therapeutic cells are pretreated with TProp than with "stand-alone" NSC therapy. Notably, the TProp-NSC group exhibits significantly stronger neuroprotective functions including enhanced differentiation, synaptic plasticity, and reduced microglia recruitment; furthermore, Wnt pathway agonists and inhibitors demonstrate a pivotal role for Wnt signaling in the process. These findings help establish MGE as a promising avenue for addressing current limitations associated with NSC transplantation via beneficially influencing neural regeneration and synaptic plasticity, thereby offering enhanced therapeutic options to boost brain recovery following global ischemia.

4.
Bioorg Chem ; 147: 107304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643563

ABSTRACT

Increasing the selectivity of chemotherapies by converting them into prodrugs that can be activated at the tumour site decreases their side effects and allows discrimination between cancerous and non-cancerous cells. Herein, the use of metabolic glycoengineering (MGE) to selectively label MCF-7 breast cancer cells with tetrazine (Tz) activators for subsequent activation of prodrugs containing the trans-cyclooctene (TCO) moiety by a bioorthogonal reaction is demonstrated. Three novel Tz-modified monosaccharides, Ac4ManNTz 7, Ac4GalNTz 8, and Ac4SiaTz 16, were used for expression of the Tz activator within sialic-acid rich breast cancer cells' surface glycans through MGE. Tz expression on breast cancer cells (MCF-7) was evaluated versus the non-cancerous L929 fibroblasts showing a concentration-dependant effect and excellent selectivity with ≥35-fold Tz expression on the MCF-7 cells versus the non-cancerous L929 fibroblasts. Next, a novel TCO-N-mustard prodrug and a TCO-doxorubicin prodrug were analyzed in vitro on the Tz-bioengineered cells to probe our hypothesis that these could be activated via a bioorthogonal reaction. Selective prodrug activation and restoration of cytotoxicity were demonstrated for the MCF-7 breast cancer cells versus the non-cancerous L929 cells. Restoration of the parent drug's cytotoxicity was shown to be dependent on the level of Tz expression where the Ac4ManNTz 7 and Ac4GalNTz 8 derivatives (20 µM) lead to the highest Tz expression and full restoration of the parent drug's cytotoxicity. This work suggests the feasibility of combining MGE and tetrazine ligation for selective prodrug activation in breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Female , Molecular Structure , Drug Screening Assays, Antitumor , Structure-Activity Relationship , MCF-7 Cells , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Metabolic Engineering , Cell Survival/drug effects
5.
Adv Healthc Mater ; 13(22): e2400742, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38676706

ABSTRACT

This work reports a new concept of cancer mask in situ to alter the specific biological functions of cancer cells. Metastatic cancer cells are highly invasive in part due to the presence of the glycan matrix in the cell membrane. Using a rational designed bio-orthogonal reaction, the cancer cell surface is reconstructed in situ by incorporating endogenous polysialic acids in the glycan matrix on the cell membrane to form a mesh-like network, called cancer mask. The network of the glycan matrix can not only immobilize cancer cells but also effectively block the stimulation of metastasis promoters to tumor cells and inhibit the formation of epithelial to mesenchymal transition (EMT), causing metastatic cancer cells incarceration. The results demonstrate a new strategy to control and even eliminate the cancer metastasis that is a major cause of treatment failure and poor patient outcome.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasm Metastasis , Humans , Cell Line, Tumor , Neoplasms/pathology , Neoplasms/metabolism , Animals , Sialic Acids/metabolism , Sialic Acids/chemistry , Polysaccharides/chemistry , Cell Membrane/metabolism , Mice
6.
ACS Nano ; 18(13): 9413-9430, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38522084

ABSTRACT

Personalized in situ tumor vaccination is a promising immunotherapeutic modality. Currently, seeking immunogenic cell death (ICD) to generate in situ tumor vaccines is still mired by insufficient immunogenicity and an entrenched immunosuppressive tumor microenvironment (TME). Herein, a series of tetrazine-functionalized ruthenium(II) sonosensitizers have been designed and screened for establishing a bioorthogonal-activated in situ tumor vaccine via oncolytic pyroptosis induction. Based on nanodelivery-augmented bioorthogonal metabolic glycoengineering, the original tumor is selectively remolded to introduce artificial target bicycle [6.1.0] nonyne (BCN) into cell membrane. Through specific bioorthogonal ligation with intratumoral BCN receptors, sonosensitizers can realize precise membrane-anchoring and synchronous click-activation in desired tumor sites. Upon ultrasound (US) irradiation, the activated sonosensitizers can intensively disrupt the cell membrane with dual type I/II reactive oxygen species (ROS) generation for a high-efficiency sonodynamic therapy (SDT). More importantly, the severe membrane damage can eminently evoke oncolytic pyroptosis to maximize tumor immunogenicity and reverse immunosuppressive TME, ultimately eliciting powerful and durable systemic antitumor immunity. The US-triggered pyroptosis is certified to effectively inhibit the growths of primary and distant tumors, and suppress tumor metastasis and recurrence in "cold" tumor models. This bioorthogonal-driven tumor-specific pyroptosis induction strategy has great potential for the development of robust in situ tumor vaccines.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Pyroptosis , Neoplasms/therapy , Vaccination , Ultrasonography , Immunosuppressive Agents , Tumor Microenvironment , Cell Line, Tumor
7.
Biotechnol J ; 19(1): e2300339, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178719

ABSTRACT

Cell-mediated drug delivery by conjugating nanomedicine to the surface of living cells is a promising strategy for enhancing the efficacy of both drug delivery and cell therapy. It exploits the tissue homing properties of the specific cell types to overcome in vivo barriers and forms a drug depot by directly putting the therapeutic payload in target cells. An important concern of developing this system is the method to conjugate nanoparticles on cells. Herein, we developed a bioorthogonal T cell conjugation strategy using SPAAC click chemistry, which allows controllable and highly efficient conjugation without affecting the viability and functions of the cytotoxic T lymphocytes. Azide groups were incorporated on the surface of T cells through metabolic glycoengineering, followed by reacting with dibenzylcyclooctyne (DBCO) modified lipid nanoparticles (LNPs). LNPs can be conjugated to T cells, allowing for the loading of different drug molecules on the cells. The metabolic engineering and click reaction approach provides a simple and versatile strategy to conjugate NPs to living cells and enable the development of sophisticated therapeutic cell products.


Subject(s)
Click Chemistry , Nanoparticles , Click Chemistry/methods , Nanoparticles/chemistry , Liposomes , Drug Delivery Systems
8.
ACS Biomater Sci Eng ; 10(1): 139-148, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-36946521

ABSTRACT

Metabolic glycoengineering involves the stimulation of cells with functionalized monosaccharides. Glucosamine, galactosamine, and mannosamine derivatives are commercially available, but their application may lead to undirected (i.e., chemical) incorporation into proteins. However, sialic acids are attached to the ends of complex sugar chains of glycoproteins, which might be beneficial for cell surface modification via click chemistry. Thus, we studied the incorporation of chemically synthesized unnatural alkyne modified sialic acid (SiaNAl) into glycoproteins of human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) and we show that SiaNAl can be efficiently incorporated in glycoproteins involved in signal transduction and cell junction.


Subject(s)
Glycoproteins , Mesenchymal Stem Cells , Humans , Glycoproteins/metabolism , N-Acetylneuraminic Acid/metabolism , Sialic Acids/metabolism , Mesenchymal Stem Cells/metabolism
9.
ACS Appl Mater Interfaces ; 15(51): 59236-59245, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38096273

ABSTRACT

Circulating tumor cells (CTCs) are the "seeds" for malignant tumor metastasis, and they serve as an ideal target for minimally invasive tumor diagnosis. Abnormal glycolysis in tumor cells, characterized by glycometabolism disorder, has been reported as a universal phenomenon observed in various types of tumors. This provides a potential powerful tool for universal CTC capture. However, to the best of our knowledge, no metabolic glycoengineering-based CTC capture strategies have been reported. Here, we proposed a nondestructive CTC capture method based on metabolic glycoengineering and a nanotechnology-based proximity effect, allowing for highly specific, sensitive, and universal CTC capture. To achieve this goal, cells are first labeled with DNA tags through metabolic glycoengineering and then captured through a DNA tetrahedra-functionalized dual-tentacle magnetic nanodevice. Due to the difference in metabolic performance, only tumor cells are labeled with more densely packed DNA tags and captured through enhanced intermolecular interaction mediated by the proximity effect. In summary, we have constructed a versatile platform for nondestructive CTC capture, offering a novel perspective for the application of CTC liquid biopsy in tumor diagnosis and treatment.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/metabolism , Cell Separation/methods , Liquid Biopsy , DNA
10.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639589

ABSTRACT

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Subject(s)
Aldehyde Dehydrogenase , Antibodies , Humans , Azides , Carcinogenesis , Click Chemistry , Aldehyde Dehydrogenase 1 Family , Retinal Dehydrogenase
11.
Adv Mater ; 35(39): e2303736, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37488693

ABSTRACT

Tumor-derived exosomes (TDEs) carry various biomolecular cargos and play crucial roles in metastasis. TDEs migrate to distal organs for intercellular communication and induce the formation of pre-metastatic niches (PMNs) to support tumor implantation and proliferation. Precise interference in the bioprocess of TDEs is expected to be efficacious for suppressing tumor metastasis. However, targeting both TDEs and the primary tumor is challenging. Here, based on metabolic glycoengineering and bio-orthogonal click chemistry, a two-step delivery strategy is designed to overcome this. During the first step, the tetraacetylated N-azidoacetyl-d-mannosamine-loaded nanoparticle responds to the metabolic activity of tumor cells in the primary tumor, tagging both tumor cells and TDEs with azide groups; dibenzyl-cyclootyne-modified nanoparticles then can, as the second step, specifically react with tumor cells and TDEs through a bio-orthogonal click reaction. This strategy not only inhibits tumor growth in pancreatic cancer models but also curbs the communicative role of TDEs in inducing liver PMNs and metastasis by tracking and downregulating the exosomal macrophage migration inhibitory factor.


Subject(s)
Exosomes , Nanoparticles , Pancreatic Neoplasms , Humans , Membranes, Artificial , Exosomes/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Nanoparticles/chemistry
12.
Cells ; 12(8)2023 04 19.
Article in English | MEDLINE | ID: mdl-37190099

ABSTRACT

Schwann cells (SCs) are myelinating cells that promote peripheral nerve regeneration. When nerve lesions form, SCs are destroyed, ultimately hindering nerve repair. The difficulty in treating nerve repair is exacerbated due to SC's limited and slow expansion capacity. Therapeutic use of adipose-derived stem cells (ASCs) is emerging in combating peripheral nerve injury due to these cells' SC differentiation capability and can be harvested easily in large numbers. Despite ASC's therapeutic potential, their transdifferentiation period typically takes more than two weeks. In this study, we demonstrate that metabolic glycoengineering (MGE) technology enhances ASC differentiation into SCs. Specifically, the sugar analog Ac5ManNTProp (TProp), which modulates cell surface sialylation, significantly improved ASC differentiation with upregulated SC protein S100ß and p75NGFR expression and elevated the neurotrophic factors nerve growth factor beta (NGFß) and glial cell-line-derived neurotrophic factor (GDNF). TProp treatment remarkably reduced the SC transdifferentiation period from about two weeks to two days in vitro, which has the potential to improve neuronal regeneration and facilitate future use of ASCs in regenerative medicine.


Subject(s)
Adipocytes , Schwann Cells , Humans , Peripheral Nerves , Cell Differentiation/physiology , Stem Cells
13.
Chemistry ; 29(20): e202203942, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36656616

ABSTRACT

Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.

14.
J Neurochem ; 164(4): 481-498, 2023 02.
Article in English | MEDLINE | ID: mdl-36504018

ABSTRACT

Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of target-specific MGE, we found that in dopaminergic or sensory neurons >60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.


Subject(s)
N-Acetylneuraminic Acid , Sialic Acids , Humans , Sialic Acids/metabolism , N-Acetylneuraminic Acid/metabolism , Glycoproteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Glycosylation , Lipids
15.
MAbs ; 14(1): 2095704, 2022.
Article in English | MEDLINE | ID: mdl-35815437

ABSTRACT

Manipulation of glycosylation patterns, i.e., glycoengineering, is incorporated in the therapeutic antibody development workflow to ensure clinical safety, and this approach has also been used to modulate the biological activities, functions, or pharmacological properties of antibody drugs. Whereas most existing glycoengineering strategies focus on the canonical glycans found in the constant domain of immunoglobulin G (IgG) antibodies, we report a new strategy to leverage the untapped potential of atypical glycosylation patterns in the variable domains, which naturally occur in 15% to 25% of IgG antibodies. Glycosylation sites were added to the antigen-binding regions of two functionally divergent, interleukin-2-binding monoclonal antibodies. We used computational tools to rationally install various N-glycosylation consensus sequences into the antibody variable domains, creating "glycovariants" of these molecules. Strikingly, almost all the glycovariants were successfully glycosylated at their newly installed N-glycan sites, without reduction of the antibody's native function. Importantly, certain glycovariants exhibited modified activities compared to the parent antibody, showing the potential of our glycoengineering strategy to modulate biological function of antibodies involved in multi-component receptor systems. Finally, when coupled with a high-flux sialic acid precursor, a glycovariant with two installed glycosylation sites demonstrated superior in vivo half-life. Collectively, these findings validate a versatile glycoengineering strategy that introduces atypical glycosylation into therapeutic antibodies in order to improve their efficacy and, in certain instances, modulate their activity early in the drug development process.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/therapeutic use , Glycosylation , Immunoglobulin G/chemistry , Polysaccharides/chemistry
16.
Biomater Adv ; 134: 112675, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35599100

ABSTRACT

This study sets the stage for the therapeutic use of Ac5ManNTProp, an N-acetylmannosamine (ManNAc) analog that installs thiol-modified sialoglycans onto the surfaces of human neural stem cells (hNSC). First, we compared hNSC adhesion to the extracellular matrix (ECM) proteins laminin, fibronectin, and collagen and found preferential adhesion and concomitant changes to cell morphology and cell spreading for Ac5ManNTProp-treated cells to laminin, compared to fibronectin where there was a modest response, and collagen where there was no observable increase. PCR array transcript analysis identified several classes of cell adhesion molecules that responded to combined Ac5ManNTProp treatment and hNSC adhesion to laminin. Of these, we focused on integrin α6ß1 expression, which was most strongly upregulated in analog-treated cells incubated on laminin. We also characterized downstream responses including vinculin display as well as the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). In these experiments, Ac5ManNTProp more strongly induced all tested biological endpoints compared to Ac5ManNTGc, showing that the single methylene unit that structurally separates the two analogs finely tunes biological responses. Together, the concerted modulation of multiple pro-regenerative activities through Ac5ManNTProp treatment, in concert with crosstalk with ECM components, lays a foundation for using our metabolic glycoengineering approach to treat neurological disorders by favorably modulating endpoints that contribute to the viability of transplanted NSCs.


Subject(s)
Laminin , Neural Stem Cells , Collagen , Fibronectins , Hexosamines , Humans , Laminin/pharmacology , Neural Stem Cells/metabolism , Sulfhydryl Compounds
17.
Biomaterials ; 283: 121463, 2022 04.
Article in English | MEDLINE | ID: mdl-35305464

ABSTRACT

Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates for repairing degenerated intervertebral discs through multiple means, including: i. Secretion of bioactive factors to regulate inflammation and, ii. The potential to differentiate into nucleus pulposus (NP)-like cells, which can integrate into host tissues. However, the differentiation ability of ADSCs to NP-like cells is limited, which emphasizes on the need for alternative approaches to regulate cell differentiations. Given that cell functions are influenced by interactions between the extracellular matrix (ECM) and cells, we hypothesize that cell surface modification promotes ADSCs adhesion and differentiation towards NP-like cells. In this study, cell surfaces of ADSCs were functionalized with unnatural sialic acid via metabolic glycoengineering. Subsequently, adhesion abilities of modified cells to three main ECM (laminin, collagen and fibronectin) were compared. The adhesion assay revealed that glycoengineered ADSCs had the highest affinity for collagen, compared to laminin and fibronectin. Moreover, cultures with collagen coated plates enhanced the differentiation of glycoengineered ADSCs to NP-like cells. Metabolic glycoengineering prolonged ADSCs viability. The glycoengineered ADSCs increased the height and elasticity of intervertebral discs, as well as the water content and ECM volumes of nucleus pulposus. In conclusion, metabolic glycoengineering of cell surfaces has a significant role in modulating cell biological functions and promoting NP tissue repair.


Subject(s)
Intervertebral Disc , Mesenchymal Stem Cells , Nucleus Pulposus , Adipocytes , Cell Differentiation/physiology , Cells, Cultured
18.
Front Cell Dev Biol ; 10: 840831, 2022.
Article in English | MEDLINE | ID: mdl-35252203

ABSTRACT

Mammalian cell membranes are decorated by the glycocalyx, which offer versatile means of generating biochemical signals. By manipulating the set of glycans displayed on cell surface, it is vital for gaining insight into the cellular behavior modulation and medical and biotechnological adhibition. Although genetic engineering is proven to be an effective approach for cell surface modification, the technique is only suitable for natural and genetically encoded molecules. To circumvent these limitations, non-genetic approaches are developed for modifying cell surfaces with unnatural but functional groups. Here, we review latest development of metabolic glycoengineering (MGE), which enriches the chemical functions of the cell surface and is becoming an intriguing new tool for regenerative medicine and tissue engineering. Particular emphasis of this review is placed on discussing current applications and perspectives of MGE.

19.
Adv Mater ; 34(10): e2107192, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34752658

ABSTRACT

Traditionally, organic chemical reactions require organic solvents, toxic catalysts, heat, or high pressure. However, copper-free click chemistry has been shown to have favorable reaction rates and orthogonality in water, buffer solutions, and physiological conditions without toxic catalysts. Strain-promoted azide-alkyne cycloaddition and inverse electron-demand Diels-Alder reactions are representative of copper-free click chemistry. Artificial chemical reactions via click chemistry can also be used outside of the laboratory in a controllable manner on live cell surfaces, in the cytosol, and in living bodies. Consequently, copper-free click chemistry has many features that are of interest in biomedical research, and various new materials and strategies for its use have been proposed. Herein, recent remarkable trials that have used copper-free click chemistry are described, focusing on their applications in molecular imaging and therapy. The research is categorized as nanoparticles for drug delivery, imaging agents for cell tracking, and hydrogels for tissue engineering, which are rapidly advancing fields based on click chemistry. The content is based primarily on the experience with click chemistry-based biomaterials over the last 10 years.


Subject(s)
Click Chemistry , Tissue Engineering , Alkynes , Azides/chemistry , Biocompatible Materials/chemistry , Cell Tracking , Click Chemistry/methods , Cycloaddition Reaction , Drug Delivery Systems/methods , Tissue Engineering/methods
20.
Adv Mater ; 34(5): e2107392, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34775659

ABSTRACT

Failure to establish immune tolerance leads to the development of autoimmune disease. The ability to regulate autoreactive T cells without inducing systemic immunosuppression represents a major challenge in the development of new strategies to treat autoimmune disease. Here, a translational method for bioengineering programmed death-ligand 1 (PD-L1)- and cluster of differentiation 86 (CD86)-functionalized mouse Schwann cells (SCs) to prevent and ameliorate multiple sclerosis (MS) in established mouse models of chronic and relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is described. It is shown that the intravenous (i.v.) administration of immune checkpoint ligand functionalized mouse SCs modifies the course of disease and ameliorates EAE. Further, it is found that such bioengineered mouse SCs inhibit the differentiation of myelin-specific helper T cells into pathogenic T helper type-1 (Th 1) and type-17 (Th 17) cells, promote the development of tolerogenic myelin-specific regulatory T (Treg ) cells, and resolve inflammatory central nervous system microenvironments without inducing systemic immunosuppression.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Antigens , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Ligands , Mice , Mice, Inbred C57BL , Multiple Sclerosis/therapy , Schwann Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL