ABSTRACT
We have recently shown that SmbP, the small metal-binding protein of Nitrosomonas europaea, can be employed as a fusion protein to express and purify recombinant proteins and peptides in Escherichia coli. SmbP increases solubility, allows simple, one-step purification through affinity chromatography, and provides superior final yields due to its low molecular weight. In this work, we report for the first time the use of SmbP to produce a recombinant peptide with anticancer activity: the antitumor-analgesic peptide (BmK-AGAP), a neurotoxin isolated from the venom of the Chinese scorpion Buthus martensii Karsch. This peptide was expressed in Escherichia coli SHuffle for correct, cytoplasmic, disulfide bond formation and tagged with SmbP at the N-terminus to improve its solubility and allow purification using immobilized metal affinity chromatography. SmbP_BmK-AGAP was found in the soluble fraction of the cell lysate. After purification and removal of SmbP by digestion with enterokinase, 1.8 mg of pure and highly active rBmK-AGAP was obtained per liter of cell culture. rBmK-AGAP exhibited antiproliferative activity on the MCF-7 cancer cell line, with a half-maximal inhibitory concentration value of 7.24 µM. Based on these results, we considered SmbP to be a suitable carrier protein for the production of recombinant, biologically active BmK-AGAP. We propose that SmbP should be an attractive fusion protein for the expression and purification of additional recombinant proteins or peptides that display anticancer activities.
ABSTRACT
In recent decades, the scientific community has widely debated the contamination of fish in the Amazon region by mercury species. As the diet of riverside populations in the Amazon region is based mainly on fish, these populations are exposed to mercurial species that can cause serious and irreversible damage to their health. The risks of consuming fish exposed to mercurial species in the Amazon region have motivated toxicological investigations. However, the effect of mercurial species on protein and enzyme levels is still controversial. In this work, analytical and bioanalytical techniques Two-dimensional polyacrylamide gel electrophoresis [2D-PAGE] Graphite Furnace Atomic Absorption Spectrometry [GFAAS], and Mass Spectrometry in Sequence with Electrospray Ionization [ESI-MS/MS] were used to identify proteins associated with mercury (metal-binding protein) in muscle and liver tissues of the fish species Pinirampus pirinampu from the Madeira River, in the Brazilian Amazon. Enzymatic and lipid peroxidation analyses were also used to assess changes related to oxidative stress. Determinations of total mercury by GFAAS indicated higher concentrations in liver tissue (555 ± 19.0 µg kg-1) when compared to muscle tissue (60 ± 2.0 µg kg-1). The fractionation process of tissue proteomes by 2D-PAGE and subsequent mapping of mercury by GFAAS in the protein spots of the gels identified the presence of mercury in three spots of the liver tissue (concentrations in the range of 0.800 to 1.90 mg kg-1). The characterization of protein spots associated with mercury by ESI-MS/MS identified the enzymes triosephosphate isomerase A, adenylate kinase 2 mitochondrial, and glyceraldehyde-3-phosphate dehydrogenase as possible candidates for mercury exposure biomarkers. The muscle tissue did not show protein spots associated with mercury. Enzymatic activity decreased proportionally to the increase in mercury concentrations in the tissues.
Subject(s)
Catfishes , Mercury , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Brazil , Catfishes/metabolism , Fishes/metabolism , Mercury/analysis , Mercury/toxicity , Oxidative Stress , Rivers/chemistry , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicityABSTRACT
(1) Background: The cathelicidin peptide LL-37 is a prominent molecule with many biological activities, including antimicrobial. Due to its importance, here, we describe the production of LL-37 tagged with SmbP, a relatively new carrier protein that improves the production of recombinant proteins and peptides in Escherichia coli. We present an alternative method for the rapid expression, purification, and antimicrobial evaluation of LL-37, that involves only one purification step. (2) Methods: A DNA construct of SmbP_LL-37 was transformed into E. coli BL21(DE3); after overnight expression, the protein was purified directly from the cell lysate using immobilized metal-affinity chromatography. SmbP_LL-37 was treated with Enterokinase to obtain the free LL-37 peptide. The antimicrobial activity of both SmbP_LL-37 and free LL-37 was determined using the colony forming unit assay method. (3) Results: SmbP_LL-37 was observed in the soluble fraction of the cell lysate; after purification with IMAC, protein gel electrophoresis, and analysis by ImageJ, it showed 90% purity. A total of 3.6 mg of SmbP_LL-37 was produced from one liter of cell culture. SmbP_LL-37 and free LL-37 both showed inhibition activity against Staphylococcus aureus and Escherichia coli. (4) Conclusions: The SmbP fusion protein is a valuable tool for producing biologically-active LL-37 peptide. The production method described here should be of interest for the expression and purification of additional cationic peptides, since it cuts the purification time considerably prior to determination of antimicrobial activity.
ABSTRACT
High concentrations of mercury found in soils, sediments, fish, and humans of the Amazon region have gained prominence in scientific studies during the last decade. However, studies related to the elucidation of mercury toxicity mechanisms in ichthyofauna at the molecular and metallomic levels that seek to elucidate physiological and functional aspects, as well as the search for biomarkers of mercury exposure, are still sparse. In the search for these answers, the present study analyzed the hepatic tissue proteome of the Arapaima gigas (pirarucu) fish species collected in the Jirau hydroelectric power plant reservoir in the state of Rondônia state, Brazil, in order to identify mercury-related metal-binding proteins and to elucidate their physiological and functional aspects. The proteomic profile of the hepatic tissue of Arapaima gigas was obtained by two-dimensional electrophoresis (2D-PAGE) and the presence of mercury was mapped in the protein SPOTS by graphite furnace atomic absorption spectrometry(GFAAS). Mercury was detected in 18 protein SPOTS with concentrations ranging from 0.13⯱â¯0.003 to 131.00⯱â¯3â¯mgâ¯kg-1. The characterization of the protein SPOTS associated with mercury was performed by electrospray ionisation tandem mass spectrometry (ESI-MS/MS), and 10 proteins were identified. Bioinformatics analyses showed that most of the proteins found linked to mercury were involved in cellular component processes and biological processes. For the most part, protein sequences have cellular functions comprising catalytic, binding, sense of localization, and metabolic processes.
Subject(s)
Carrier Proteins/chemistry , Mercury/chemistry , Proteomics/methods , Animals , Brazil , Fishes , HumansABSTRACT
Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.