Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Klin Onkol ; 38(2): 95-101, 2024.
Article in English | MEDLINE | ID: mdl-38697817

ABSTRACT

BACKGROUND: The N-myc downstream-regulated gene 1 (NDRG1) has been discovered as a significant gene in the progression of cancers. However, the regulatory mechanism of NDRG1 remained obscure in prostate cancer (PCa). METHODS: The miR-96-5p and NDRG1 expression levels were evaluated in PCa cell lines, and prostate tissues, and validated in public databases by real-time polymerase chain reaction, western blot analysis, and immunohistochemistry. The function of miR-96-5p and NDRG1 were investigated by scratch assay and transwell assays in vitro, and mouse xenograft assay in vivo. The candidate pathway regulated by NDRG1 was conducted by the next-generation gene sequencing technique. Immunofluorescence and luciferase assays were used to detect the relation between miR-96-5p, NDRG1, and NF-kB pathway. RESULTS: Overexpressing NDRG1 suppresses the migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro, and inhibits metastasis in vivo. Moreover, miR-96-5p contributes to NDRG1 deficiency and promotes PCa cell migration and invasion. Furthermore, NDRG1 loss activates the NF-kB pathway, which stimulates p65 and IKBa phosphorylation and induces EMT in PCa. CONCLUSIONS: MiR-96-5p promotes the migration and invasion of PCa by targeting NDRG1 and regulating the NF-kB pathway.


Subject(s)
Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins , MicroRNAs , NF-kappa B , Neoplasm Invasiveness , Prostatic Neoplasms , MicroRNAs/genetics , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , NF-kappa B/metabolism , Animals , Cell Line, Tumor , Mice , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic
2.
Int Arch Allergy Immunol ; 185(7): 704-717, 2024.
Article in English | MEDLINE | ID: mdl-38484719

ABSTRACT

INTRODUCTION: The NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptosis was positively correlated with the allergic rhinitis progression and was reported to be regulated by SMAD family member 7 (Smad7). Bioinformatics analysis revealed that Smad7 might be targeted by miR-96-5p, and miR-96-5p might be targeted by long noncoding RNA zinc finger antisense 1 (ZFAS1). However, the effects and regulatory mechanisms of the ZFAS1/miR-96-5p/Smad7 functional axis in allergic rhinitis have not been investigated. METHODS: Human nasal mucosa epithelial cell line RPMI 2650 and C57BL/6 mice were obtained for in vitro and in vivo studies. Dual-luciferase reporter assay and RNA immunoprecipitation were implemented for detecting molecular interactions. Cell counting kit-8 and flow cytometry were used for measuring cell viability and pyroptosis. ELISA was obtained for monitoring cytokine secretion. RT-qPCR and Western blot were examined for determining RNA and protein expression. RESULTS: In vitro studies revealed that ZFAS1 was downregulated in interleukin (IL)-13-treated RPMI 2650 cells, while overexpression of ZFAS1 enhanced cell viability and inhibited NLRP3-mediated pyroptosis and inflammatory response. ZFAS1 directly inhibited miR-96-5p to suppress NLRP3-mediated pyroptosis in IL-13-treated RPMI 2650 cells. MiR-96-5p bound to the 3'-untranslated region of Smad7 and knockdown of Smad7 significantly reversed the effects of miR-96-5p depletion. Moreover, in vivo experiments further confirmed the findings of in vitro studies and showed ZFAS1 overexpression or miR-96-5p inhibition alleviated allergic rhinitis in vivo. CONCLUSION: ZFAS1 downregulated the expression of miR-96-5p to upregulate Smad7 level, which subsequently inhibited NLRP3-mediated pyroptosis and inflammatory response to ameliorate allergic rhinitis.


Subject(s)
MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Rhinitis, Allergic , Signal Transduction , Smad7 Protein , Animals , Humans , Mice , Cell Line , Disease Models, Animal , Inflammasomes/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism
3.
Exp Neurol ; 374: 114676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190934

ABSTRACT

Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , MicroRNAs , Reperfusion Injury , Animals , Male , Mice , Apoptosis , Brain Injuries/metabolism , Brain Ischemia/metabolism , Caspase 1 , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , Pyroptosis , Reperfusion Injury/metabolism , Water
4.
Ir J Med Sci ; 193(1): 241-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37515685

ABSTRACT

BACKGROUND: Diabetic foot ulcer (DFU) carries high rates of major amputation and mortality. AIMS: The goals of this study were to identify expression of circulating lncRNA DLEU1 and miR-96-5p in patients with diabetic foot ulcer (DFU) and to explore the function of lncRNA DLEU1/miR-96-5p axis in DFU. METHODS: Matched patients with DFU and healthy individuals were randomly selected. Serum samples from all subjects were used for circulating lncRNA DLEU1 and miR-96-5p assessment by RT-qPCR. Receiver operating characteristic (ROC) curve was plotted to assess the discriminative capacity of lncRNA DLEU1 and miR-96-5p in identifying DFU. Cell proliferation was detected by CCK-8 assay. Cell apoptosis was assayed by Annexin V-FITC/PI staining method. Bioinformatics, luciferase reporter activity assay, and in vitro cell experiments were used to explore the relationship between lncRNA DLEU1 and miR-96-5p. RESULTS: LncRNA DLEU1 and miR-96-5p were significantly up- and downregulated in patients with DFU, respectively, compared with controls. After ROC assessment, lncRNA DLEU1 and miR-96-5p were found to discriminate DFU from miR-96-5p. Furthermore, lncRNA DLEU1 inhibited human umbilical vein endothelial cells (HUVECs) cell proliferation and increased HUVECs apoptosis and oxidative stress through sponging miR-96-5p. CONCLUSION: Our findings suggest lncRNA DLEU1 and miR-96-5p as circulating biomarkers for DFU. Also, we provide the clue for the pathogenic significance of lncRNA DLEU1/miR-96-5p in DFU, as well as insights for new potential targets.


Subject(s)
Diabetes Mellitus , Diabetic Foot , MicroRNAs , RNA, Long Noncoding , Humans , Diabetic Foot/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Angiogenesis , Endothelial Cells/metabolism , Endothelial Cells/pathology , Wound Healing , Cell Proliferation/genetics
5.
J Orthop Surg Res ; 18(1): 916, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041147

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD. METHODS: In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1ß (IL-1ß). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling. RESULTS: PPARγ expression reduced with concentration and time under IL-1ß stimulation, while miR-96-5p expression showed the reverse trend (P < 0.05). Upregulation or/and activation of PPARγ inhibited IL-1ß-induced the increase in inflammatory factor levels, apoptosis, degradation of the ECM, and the nuclear translocation of NF-κB (P < 0.05). MiR-96-5p was highly expressed but PPARγ was lowly expressed in IDD, while knockdown of PPARγ partially reversed remission of IDD induced by miR-96-5p downregulation (P < 0.05). MiR-96-5p promoted NF-κB entry into the nucleus but PPARγ inhibited this process. CONCLUSION: Inhibition of miR-96-5p suppressed IDD progression by regulating the PPARγ/NF-κB pathway. MiR-96-5p may be a promising target for IDD treatment clinically.


Subject(s)
Intervertebral Disc Degeneration , MicroRNAs , Humans , NF-kappa B/metabolism , Intervertebral Disc Degeneration/pathology , PPAR gamma/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Down-Regulation , Apoptosis/genetics
6.
Toxics ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133379

ABSTRACT

Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 µmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 µmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 µmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.

7.
SAGE Open Med ; 11: 20503121231205710, 2023.
Article in English | MEDLINE | ID: mdl-37915840

ABSTRACT

Backgrounds: Papillary thyroid cancer is the most common pathological type of thyroid cancer. miR-96-5p, a member of the miR-183 family, constitute a polycistronic miRNA cluster. In breast cancer, miR-96-5p promotes cell invasion, migration, and proliferation in vitro by inhibiting PTPN9. Moreover, miR-96-5p was reported to function as an oncogene in many cancers. However, whether miR-96-5p is involved in the development of papillary thyroid cancers and its potential mechanism is still unknown. The present study aims to explore the relationship between miR-96-5p and GPC3 expression in the development of papillary thyroid cancers. Methods: Transcriptomic sequencing was carried out using six pairs of papillary thyroid cancer and adjacent normal tissues. Quantitative real-time polymerase chain reaction (PCR) experiments were performed to examine the expression of genes. Results: In total, there were 1588 up-regulated and 1803 down-regulated differentially expressed genes between papillary thyroid cancer and normal tissues. Gene ontology and Kyoto encyclopedia of genes and genomes analysis revealed that extracellular matrix structure and proteoglycans were mainly involved in papillary thyroid cancer. Among the cluster of proteoglycans, GPC3 was significantly down-regulated in papillary thyroid cancer and is a target of miR-96. Conclusion: miR-96-5p participates in the development of papillary thyroid cancer by regulating the expression of GPC3. Thus, targeting miR-96-5p may be a potential therapeutic approach for preventing and treating papillary thyroid cancer.

8.
Kidney Blood Press Res ; 48(1): 611-627, 2023.
Article in English | MEDLINE | ID: mdl-37717559

ABSTRACT

INTRODUCTION: Our study investigated the possible mechanisms of the role of the transcription factor Sox9 in the development and progression of kidney injury through regulation of the miR-96-5p/Trib3/IL-6 axis. METHODS: Bioinformatics analysis was performed to identify differentially expressed genes in kidney injury and normal tissues. An in vivo animal model of kidney injury and an in vitro cellular model of kidney injury were constructed using LPS induction in 8-week-old female C57BL/6 mice and human normal renal tubular epithelial cells HK-2 for studying the possible roles of Sox9, miR-96-5p, Trib3, and IL-6 in kidney injury. RESULTS: Sox9 was highly expressed in both mouse and cellular models of kidney injury. Sox9 was significantly enriched in the promoter region of miR-96-5p and repressed miR-96-5p expression. Trib3 was highly expressed in both mouse and cellular models of kidney injury and promoted inflammatory responses and kidney injury. In addition, Trib3 promoted IL-6 expression, which was highly expressed in kidney injury, and promoted the inflammatory response and extent of injury in kidney tissue. In vivo and in vitro experiments confirmed that the knockdown of Sox9 improved the inflammatory response and fibrosis of mouse kidney tissues and HK-2 cells, while the ameliorative effect of silencing Sox9 was inhibited by overexpression of IL-6. CONCLUSION: Collectively, Sox9 up-regulates miR-96-5p-mediated Trib3 and activates the IL-6 signaling pathway to exacerbate the inflammatory response, ultimately promoting the development and progression of kidney injury.


Subject(s)
MicroRNAs , Animals , Female , Humans , Mice , Apoptosis , Interleukin-6/metabolism , Kidney/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors
9.
Brain Inj ; 37(11): 1235-1244, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37515578

ABSTRACT

OBJECTIVE: This study aims to explore the function of circRIMS in cerebral ischemia/reperfusion (CIR) and its regulatory mechanism. METHOD: The expression of the circRIMS was examined in GEO chip data and validated by qRT-PCR analysis. A middle cerebral artery occlusion/repression (MCAO/R) model was developed using C57BL/6J mice. Starbase and circinteractome were employed to identify the target miRNA and mRNA. The result was confirmed by dual-luciferase reporter assay, and biotinylated RNA-pulldown assay. The cell viability and apoptosis were confirmed through CCK-8 and flow cytometry assay. RESULTS: This study revealed that circRIMS expression was upregulated in MCAO mice model and OGD/RX-simulated cell model. Knockdown circRIMS demonstrated the functional of circRIMS in increasing cell viability, reducing apoptosis, LDH activity and inflammatory factors secretion in OGD/RX-simulated CIR injury in vitro. Additionally, miR-96-5p was identified as a target of circRIMS, while the STAT1 gene is a downstream gene of miR-96-5p, and JAK was also considered to be a downstream gene of the JAK-STAT pathway. Furthermore, inhibition of miR-96-5p or overexpression of STAT1 promoted the progression of CIR injury by elevating apoptosis, reducing cell viability, and increasing the secretion of inflammatory cytokines. CONCLUSION: CircRIMS contributes to the progression of CIR injury via regulating miR-96-5p/JAK/STAT1 axis.


Subject(s)
Brain Ischemia , MicroRNAs , Reperfusion Injury , Mice , Animals , Gene Expression Regulation , Janus Kinases/genetics , Janus Kinases/metabolism , Mice, Inbred C57BL , Signal Transduction , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Brain Ischemia/genetics , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Glucose
10.
Respir Res ; 24(1): 165, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344798

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare but fatal cardiopulmonary disease mainly characterized by pulmonary vascular remodeling. Aberrant expression of circRNAs has been reported to play a crucial role in pulmonary vascular remodeling. The existing literature predominantly centers on studies that examined the sponge mechanism of circRNAs. However, the mechanism of circRNAs in regulating PAH-related protein remains largely unknown. This study aimed to investigate the effect of circItgb5 on pulmonary vascular remodeling and the underlying functional mechanism. MATERIALS AND METHODS: High-throughput circRNAs sequencing was used to detect circItgb5 expression in control and PDGF-BB-treated pulmonary arterial smooth muscle cells (PASMCs). Localization of circItgb5 in PASMCs was determined via the fluorescence in situ hybridization assay. Sanger sequencing was applied to analyze the circularization of Itgb5. The identification of proteins interacting with circItgb5 was achieved through a RNA pull-down assay. To assess the impact of circItgb5 on PASMCs proliferation, an EdU assay was employed. Additionally, the cell cycle of PASMCs was examined using a flow cytometry assay. Western blotting was used to detect biomarkers associated with the phenotypic switch of PASMCs. Furthermore, a monocrotaline (MCT)-induced PAH rat model was established to explore the effect of silencing circItgb5 on pulmonary vascular remodeling. RESULTS: CircItgb5 was significantly upregulated in PDGF-BB-treated PASMCs and was predominately localized in the cytoplasm of PASMCs. In vivo experiments revealed that the knockdown of circItgb5 attenuated MCT-induced pulmonary vascular remodeling and right ventricular hypertrophy. In vitro experiments revealed that circItgb5 promoted the transition of PASMCs to synthetic phenotype. Mechanistically, circItgb5 sponged miR-96-5p to increase mTOR level and interacted with Uba1 protein to activate the Ube2n/Mdm2/ACE2 pathway. CONCLUSIONS: CircItgb5 promoted the transition of PASMCs to synthetic phenotype by interacting with miR-96-5p and Uba1 protein. Knockdown of circItgb5 mitigated pulmonary arterial pressure, pulmonary vascular remodeling and right ventricular hypertrophy. Overall, circItgb5 has the potential for application as a therapeutic target for PAH.


Subject(s)
Hypertension, Pulmonary , Integrin beta Chains , RNA, Circular , Animals , Male , Rats , Cells, Cultured , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , MicroRNAs/metabolism , Monocrotaline , Myoblasts, Smooth Muscle/metabolism , Proto-Oncogene Proteins c-sis , Rats, Sprague-Dawley , RNA, Circular/metabolism , TOR Serine-Threonine Kinases/metabolism , Up-Regulation , Vascular Remodeling , Integrin beta Chains/genetics
11.
Heliyon ; 9(5): e15539, 2023 May.
Article in English | MEDLINE | ID: mdl-37180885

ABSTRACT

Background: miR-96-5p is a highly expressed microRNA in the retina of subjects with diabetes. The INS/AKT/GLUT4 signaling axis is the main cell signaling pathway of glucose uptake in cells. Here, we investigated the role of miR-96-5p in this signaling pathway. Methods: Expression levels of miR-96-5p and its target genes were measured under high glucose conditions, in the retina of streptozotocin-induced diabetic mice, in the retina of AAV-2-eGFP-miR-96 or GFP intravitreal injected mice and in the retina of human donors with diabetic retinopathy (DR). MTT, wound healing, tube formation, Western blot, TUNEL, angiogenesis assays and hematoxylin-eosin staining of the retinal sections were performed. Results: miR-96-5p expression was increased under high glucose conditions in mouse retinal pigment epithelial (mRPE) cells, in the retina of mice receiving AAV-2 carrying miR-96 and STZ-treated mice. Expression of the miR-96-5p target genes related to the INS/AKT/GLUT4 signaling pathway was reduced following miR-96-5p overexpression. mmu-miR-96-5p expression decreased cell proliferation and thicknesses of retinal layers. Cell migration, tube formation, vascular length, angiogenesis, and TUNEL-positive cells were increased. Conclusions: In in vitro and in vivo studies and in human retinal tissues, miR-96-5p regulated the expression of the PIK3R1, PRKCE, AKT1, AKT2, and AKT3 genes in the INS/AKT axis and some genes involved in GLUT4 trafficking, such as Pak1, Snap23, RAB2a, and Ehd1. Because disruption of the INS/AKT/GLUT4 signaling axis causes advanced glycation end product accumulation and inflammatory responses, the inhibition of miR-96-5p expression could ameliorate DR.

12.
Article in Chinese | MEDLINE | ID: mdl-37248076

ABSTRACT

Objective: To investigate the effect and mechanism of miR-96-5p on apoptosis of PC12 cells induced by maltol aluminum. Methods: In January 2021, PC12 cells at logarithmic growth phase were divided into blank control group and low, medium and high dose group. Cells in each group were treated with 0, 100, 200 and 400 µmol/L maltol aluminum for 24 hours respectively. Cells were collected and cell apoptosis rates were detected by flow cytometry, miR-96-5p and insulin receptor substrate 1 (IRS1) mRNA expressions were detected by qRT-PCR, and the protein expression levels of cysteine protease 3 (Caspase3) 、activated cysteine protease 3 (Cleaved-caspase3) 、IRS1、phosphorylated protein kinase B (p-AKT) and phosphorylated glucose synthesis kinase 3ß (p-GSK3ß) were detected by western blotting. The target binding relationship between miR-96-5p and IRS1 was detected by double luciferase reporter gene experiment. The miR-96-5p inhibitor cells and negative control cells were constructed after transfecting PC12 cells with miR-96-5p inhibitor for 24 hours. The cells were divided into blank control group, negative control group, aluminum exposure group, aluminum exposure+negative control group, aluminum exposure+miR-96-5p inhibition group, and miR-96-5p inhibition group. After transfecting PC12 cells with miR-96-5p inhibition and IRS1 siRNA for 24 h, the cells were divided into aluminum exposure+miR-96-5p inhibition+negative control group and aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group. The control group was cultured in complete culture medium, and cells in the aluminum exposure group were treated with 200 µmol/L maltol aluminum for 24 hours. Cells in each group were collected and the apoptosis rate, miR-96-5p and IRS1 mRNA expression levels, as well as protein expression levels of Caspase3, Cleaved-caspase3, IRS1, p-AKT, and p-GSK3ß were measured. Results: After 24 hours of exposure, compared with blank control group and low-dose group, the apoptosis rates, relative expressions of Caspase3 and Cleaved-caspase3 proteins, and relative expressions of miR-96-5p in the medium and high-dose groups of PC12 cells were significantly increased, while the relative expression levels of IRS1 mRNA, IRS1, p-AKT and p-GSK3ß proteins were significantly decreased (P<0.05). Targetscan prediction and double luciferase report experiment both proved that IRS1 was a direct target gene of miR-96-5p. In the transfection experiment, compared with the aluminum exposure group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins, the relative expression of miR-96-5p in the aluminum exposure+miR-96-5p inhibition group were significantly decreased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3ß proteins were significantly increased (P<0.05). In the IRS1 low expression experiment, compared with the aluminum exposure+miR-96-5p inhibition+negative control group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins in the aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group were significantly increased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3ß proteins were significantly decreased (P<0.05) . Conclusion: The increased expression of miR-96-5p and the targeted inhibition of IRS1 may be one of the mechanisms of apoptosis of PC12 cells induced by maltol aluminum exposure.


Subject(s)
MicroRNAs , Animals , Rats , Aluminum/toxicity , Apoptosis , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , PC12 Cells , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger
13.
Appl Biochem Biotechnol ; 195(11): 6840-6855, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36943602

ABSTRACT

The aberrant expression of mRNAs participates in the pathogenesis of hepatic fibrosis. However, the precise mechanisms regulated by microRNAs (miRNAs) remain unclear. This study aims to investigate the functions about differentially expressed mRNAs (DEMs) in liver fibrosis and their regulatory mechanisms. The DEMs datasets about hepatic stellate cells (HSCs) obtained from hepatic fibrosis mice versus HSCs obtained from normal mice were downloaded from the GEO database (GSE120281). According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the GSE120281 datasets, ECM-receptor interaction was the most significant enrichment pathway that was correlated with hepatic fibrosis, and the fibronectin 1 (FN1) gene was upregulated most significantly in the signaling pathway. Downregulation of the expression of the FN1 gene by transfecting with FN1-siRNA alleviated the activity of HSCs. Four different bioinformatics web-based tools were used to predict that microRNA-96-5p (miR-96-5p) would directly target FN1, and a luciferase assay further confirmed this. Moreover, miR-96-5p was declined in activated HSCs and FN1, whereas laminin γ1 (LAMC1), collagen 1α1 (COL1A1) in the ECM-receptor interaction pathway, and the fibrosis marker α-smooth muscle actin (α-SMA) could be reduced by upregulation of the miRNA. Additionally, miR-96-5p expression was low in CCl4-induced liver fibrosis mice. Increased miR-96-5p expression alleviated liver fibrosis, improved liver function, and inhibited the expression of α-SMA, FN1, COL1A1, and LAMC1. In conclusion, this study indicated that upregulation of miR-96-5p could reduce HSC activation and relieve hepatic fibrosis by restraining the FN1/ECM-receptor interaction pathway.


Subject(s)
Liver Cirrhosis , MicroRNAs , Animals , Mice , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Fibrosis , Signal Transduction/genetics , Cell Proliferation/genetics
14.
Mol Biotechnol ; 65(10): 1679-1692, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36745282

ABSTRACT

Circular RNAs (circRNAs) have been shown to have a vital effect on hepatoma progression. The purpose of this study was to explore the function and mechanism of circRNA testis expressed 2 (circ_TEX2, circ_0004913) in hepatoma pathogenesis. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect circ_TEX2, miR-96-5p, and sprouty-related EVH1 domain containing 1 (SPRED1) expression. Western blot analyzed the proliferating cell nuclear antigen (PCNA), SPRED1, and the apoptosis-related protein levels. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assays were used to test cell proliferation. Cell migration and invasion were analyzed by transwell assay, and cell apoptosis was detected by flow cytometry. Dual-luciferase reporter assay was done to analyze the target relationship between miR-96-5p and circ_TEX2 or SPRED1. The effects of circ_TEX2 on tumor growth in vivo were verified by xenograft model experiment and immunohistochemistry assay. The levels of circ_TEX2 and SPRED1 were down-regulated in hepatoma tissues and cells, and miR-96-5p expression was up-regulated. Overexpression of circ_TEX2 could inhibit the proliferation, migration, and invasion and boost cell apoptosis of hepatoma cells. Circ_TEX2 affected SPRED1 expression by sponging miR-96-5p. The overexpression of miR-96-5p could overturn the influence of circ_TEX2 up-regulation on malignant behaviors of hepatoma cells, and reduced SPRED1 expression could reverse the function of miR-96-5p knockdown on hepatoma cell malignant behaviors. Circ_TEX2 could suppress the growth of xenograft tumors in vivo. Our study demonstrates the tumor-suppressive role of circ_TEX2 in hepatoma through miR-96-5p/SPRED1 axis, suggesting that strategies directed toward restoring the production of circ_TEX2 might have a therapeutic value for hepatoma treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Male , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Apoptosis/genetics , Biological Assay , Cell Proliferation , MicroRNAs/genetics , Adaptor Proteins, Signal Transducing
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986007

ABSTRACT

Objective: To investigate the effect and mechanism of miR-96-5p on apoptosis of PC12 cells induced by maltol aluminum. Methods: In January 2021, PC12 cells at logarithmic growth phase were divided into blank control group and low, medium and high dose group. Cells in each group were treated with 0, 100, 200 and 400 μmol/L maltol aluminum for 24 hours respectively. Cells were collected and cell apoptosis rates were detected by flow cytometry, miR-96-5p and insulin receptor substrate 1 (IRS1) mRNA expressions were detected by qRT-PCR, and the protein expression levels of cysteine protease 3 (Caspase3) 、activated cysteine protease 3 (Cleaved-caspase3) 、IRS1、phosphorylated protein kinase B (p-AKT) and phosphorylated glucose synthesis kinase 3β (p-GSK3β) were detected by western blotting. The target binding relationship between miR-96-5p and IRS1 was detected by double luciferase reporter gene experiment. The miR-96-5p inhibitor cells and negative control cells were constructed after transfecting PC12 cells with miR-96-5p inhibitor for 24 hours. The cells were divided into blank control group, negative control group, aluminum exposure group, aluminum exposure+negative control group, aluminum exposure+miR-96-5p inhibition group, and miR-96-5p inhibition group. After transfecting PC12 cells with miR-96-5p inhibition and IRS1 siRNA for 24 h, the cells were divided into aluminum exposure+miR-96-5p inhibition+negative control group and aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group. The control group was cultured in complete culture medium, and cells in the aluminum exposure group were treated with 200 μmol/L maltol aluminum for 24 hours. Cells in each group were collected and the apoptosis rate, miR-96-5p and IRS1 mRNA expression levels, as well as protein expression levels of Caspase3, Cleaved-caspase3, IRS1, p-AKT, and p-GSK3β were measured. Results: After 24 hours of exposure, compared with blank control group and low-dose group, the apoptosis rates, relative expressions of Caspase3 and Cleaved-caspase3 proteins, and relative expressions of miR-96-5p in the medium and high-dose groups of PC12 cells were significantly increased, while the relative expression levels of IRS1 mRNA, IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05). Targetscan prediction and double luciferase report experiment both proved that IRS1 was a direct target gene of miR-96-5p. In the transfection experiment, compared with the aluminum exposure group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins, the relative expression of miR-96-5p in the aluminum exposure+miR-96-5p inhibition group were significantly decreased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly increased (P<0.05). In the IRS1 low expression experiment, compared with the aluminum exposure+miR-96-5p inhibition+negative control group, the apoptosis rate, the relative expressions of Caspase3 and Cleaved-caspase3 proteins in the aluminum exposure+miR-96-5p inhibition+IRS1 inhibition group were significantly increased, while the relative expression levels of IRS1 mRNA and IRS1, p-AKT and p-GSK3β proteins were significantly decreased (P<0.05) . Conclusion: The increased expression of miR-96-5p and the targeted inhibition of IRS1 may be one of the mechanisms of apoptosis of PC12 cells induced by maltol aluminum exposure.


Subject(s)
Animals , Rats , Aluminum/toxicity , Apoptosis , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Insulin Receptor Substrate Proteins/metabolism , MicroRNAs/metabolism , PC12 Cells , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1030192

ABSTRACT

[Objective]To assess the effectiveness of prepared strychnine in the treatment of bortezomib-induced peripheral neuropathy(BIPN)and explore the mechanism of intervention of BIPN based on long noncoding RNA(lncRNA)X inactivated specific transcript(XIST)/ZNFX1 antisense RNA 1(ZFAS1).[Methods]Twenty patients diagnosed as multiple myeloma who received bortezomib(BTZ)and developed BIPN and received strgchnine treatment were collected by prospective non-randomized controlled study method.The traditional Chinese medicine(TCM)symptom score,neurotoxicity score,peripheral neuropathy(PN)grade,and partial peripheral nerve conduction velocity were compared with patients who did not receive strychnine treatment.Using self-control,peripheral blood samples were collected from patients in the treatment group,and enzyme-linked immunosorbent assay(ELISA)was used to detect the expression of inflammation-related factors.DRG 50B11 cells were cultured and screened by cell counting kit-8(CCK-8)for the optimal acting concentration and time of strychnine and the optimal acting time of BTZ,and the cases were randomly divided into normal control group,BTZ group,and strychnine+BTZ group.Real-time quantitative polymerase chain reaction(Real-time qPCR)was used to detect the expression levels of inflammation-related factors and total RNA related indexes,and it analyzed the differences and correlations.[Results]The clinical study showed that compared with control group,PN,TCM syndrome scores and neurotoxicity score were decreased after treatment,while peripheral nerve conduction velocity was increased(P<0.05),and there were no significant adverse effects.The experimental results showed that compared with those before treatment,the expression of interleukin-17(IL-17),tumor necrosis factor-α(TNF-α),IL-1β,IL-6,nerve growth factor(NGF)and brain-derived neurotrophic factor(BDNF)were reduced(P<0.05),and there was a significant negative correlation with time(P<0.01).Compared with BTZ group,the expression levels of IL-17,TNF-α,IL-1β,IL-6,NGF,BDNF,the lncRNA XIST,fibronectin 1(FN1)and phospho-focal adhesion kinase(p-FAK)were decreased in strychnine+BTZ group(P<0.05),while the expressions of miR-96-5P and miR-1271-5P increased(P<0.05),without significant difference in the expression of lncRNA ZFAS1(P>0.05).lncRNA XIST expression levels were significantly positively correlated with the expressions of IL-17,TNF-α,IL-1β,IL-6,NGF,BDNF,FN1 and p-FAK(P<0.01),but no moderate negative correlated with miR-96-5P(P<0.05),or very weakly correlated or no correlated with miR-1271-5P(P>0.05).[Conclusion]Prepared strychnine capsule can alleviate BIPN to a certain extent and is relatively safe,and its mechanism may be related to the regulation of lncRNA XIST for promoting the expression of miR-96-5P/FN1 and inhibit p-FAK-mediated neuroinflammation.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014581

ABSTRACT

AIM: To investigate the injury of emodin (EMO) in reduce of glomerular mesangial cells (MCs) in lupus nephritis by targeting forkhead protein K2 (FOXK2) through miR-96-5p. METHODS: The contents of 24 h urine protein, serum urea nitrogen (BUN) and serum creatinine (Scr) in MRL / faslpr mice (lupus nephritis group) and MRL / MPJ mice (control group) were detected. MCs were separated, purified and divided into: MCs group (MCs without any treatment), L-EMO group (MCs treated with 10 μmol/L Emodin), M-EMO group (MCs treated with 25 μmol / L Emodin), H-EMO group (MCs treated with 50 μmol / L Emodin), H-EMO + miR-96-5p-NC group (MCs treated with 50 μmol / L Emodin and transfected with miR-96-5p-NC), and H-EMO + miR-96-5p-minic group (MCs treated with 50 μmol/ L Emodin and transfected with miR-96-5p-minic). Double luciferase report experiment was used to verify the targeting relationship between miR-96-5p and FOXK2. The real-time quantitative fluorescent polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-96-5p. Western blot was used to detect the expression of FOXK2 and apoptosis related proteins. The enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors in MCs. cell count kit 8 (CCK-8) was used to determine the activity of MCs. Annexin-V FITC/PI double staining was used to detect apoptosis of MCs. RESULTS: Compared with the control group, 24 h urinary protein content, serum BUN and Scr levels in the lupus nephritis group were significantly increased (P< 0.05). Compared with the MCs group, the miR-96-5p expression, interleukin1β (IL-1β), interleukin6 (IL-6), tumor necrosis factor-α (TNF-α), A450 value and B-lymphoblastoma-2 (Bcl-2) protein in the L-EMO group, M-EMO group and H-EMO group were significantly decreased (P<0.05), the FOXK2 level, cell apoptosis rate, Bcl-2 related X gene (Bax), aspartate specific cysteine proteinase-3 (cleaved Caspase-3) protein levels were significantly increased, respectively (P<0.05), the effect of Emodin was dose-dependent. Compared with the H-EMO group and H-EMO+miR-96-5p-NC group, H-EMO+miR-96-5p-minic group obviously increased the miR-96-5p expression, inflammatory factor levels, A450 value and Bcl-2 protein level (P<0.05), and obviously decreased FOXK2 level and cell apoptosis rate (P< 0.05). CONCLUSION: EMO can reduce the injury of lupus nephritis MCs by down-regulating miR-96-5p and then up-regulating FOXK2.

18.
Clinics (Sao Paulo) ; 78: 100145, 2023.
Article in English | MEDLINE | ID: mdl-36473369

ABSTRACT

OBJECTIVES: Lung cancer was one of the most common malignancies around the world. It has great significance in to search for the mechanism of occurrence and development of lung cancer. LIM Domain Binding protein 2 (LDB2) belongs to the LIM-domain binding family, it can be used as a binding protein that combined with other transcription factors to form the transcription complex for regulating the expression of target genes. The expression of microRNA-96-5p (miR-96-5p) has been investigated in various tumors. The aim of this study is to investigate the potential role of LDB2 and miR-96-5p in lung cancer. METHODS: Real-time quantitative PCR was applied to detect the expression of LDB2 and miR-96-5p. The proliferation, invasion, and metastasis of H1299 cells were analyzed by CCK8, transwell, and wound healing assay after LDB2 or miR-96-5p transfection. Luciferase activities assay and western blot were used to reveal the targeted regulation between LDB2 and miR-96-5p. RESULTS: Here the authors found LDB2 was down-regulated in lung cancer tissues and negatively correlated with miR-96-5p expression, it could promote or inhibit the proliferation, invasion and metastasis of H1299 cells after LDB2 knockdown or overexpression and regulate the expression of cyclinD1, MMP9, Bcl-2, and Bax via ERK1/2 signaling pathway. Furthermore, miR-96-5p exerted its function by directly binding to 3'-UTR of LDB2 and regulating expression of LDB2. miR-96-5p could promote the proliferation, invasion, and metastasis of H1299 cells. CONCLUSION: These findings demonstrate that LDB2 can act as a new regulator to inhibit cell proliferation, invasion, and metastasis via the ERK1/2 signaling pathway, and miR-96-5p may be a potential promising molecular by targeting LDB2 in lung cancer.


Subject(s)
Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Cell Movement/genetics , Lung Neoplasms/pathology , Cell Proliferation/genetics , 3' Untranslated Regions , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
19.
Transl Res ; 256: 1-13, 2023 06.
Article in English | MEDLINE | ID: mdl-36586536

ABSTRACT

Polycystic ovary syndrome (PCOS), characterized by the androgen excess and arrest of antral follicles, is a common endocrine disorder among women lacking specific diagnostic biomarkers and therapeutic targets. Herein, we studied the molecular mechanism of miR-96-5p in the process of PCOS and its potential applications in PCOS. Clinically, we found that miR-96-5p significantly decreased in serum, follicular fluid and primary human granulosa cells (hGCs) of PCOS patients (n = 70) vs non-PCOS women (n = 60), as well as in the ovaries of 3-types of induced PCOS-like mice. Furthermore, we demonstrated that the elevated circulating miR-96-5p levels were significantly correlated with the PCOS disordered endocrine clinical features, and the area under the curve of receiver operating characteristic was 0.8344, with 75.71% specificity and 80% sensitivity. Mechanically, we identified miR-96-5p as an androgen-regulated miRNA that directly targets the forkhead transcription factor FOXO1. Inhibition of miR-96-5p decreased estrogen synthesis, while decreasing the cell proliferation index of KGN via regulating the expression of FOXO1 and its downstream genes. Inversely, inhibition of FOXO1 abrogated the effect of miR-96-5p on estrogen synthesis and proliferation index. Of note, ovarian intra-bursal injection of miR-96-5p agomir rescued the phenotypes of dehydroepiandrosterone-induced PCOS like mice. In conclusion, our results clarified a vital role of miR-96-5p in the pathogenesis of PCOS and might serve as a novel diagnostic biomarker and therapeutic target for PCOS.


Subject(s)
MicroRNAs , Polycystic Ovary Syndrome , Humans , Female , Mice , Animals , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/therapy , Androgens/adverse effects , Androgens/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Granulosa Cells/metabolism , Estrogens
20.
Clinics ; Clinics;78: 100145, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421247

ABSTRACT

Abstract Objectives: Lung cancer was one of the most common malignancies around the world. It has great significance in to search for the mechanism of occurrence and development of lung cancer. LIM Domain Binding protein 2 (LDB2) belongs to the LIM-domain binding family, it can be used as a binding protein that combined with other transcription factors to form the transcription complex for regulating the expression of target genes. The expression of microRNA-96-5p (miR-96-5p) has been investigated in various tumors. The aim of this study is to investigate the potential role of LDB2 and miR-96-5p in lung cancer. Methods: Real-time quantitative PCR was applied to detect the expression of LDB2 and miR-96-5p. The proliferation, invasion, and metastasis of H1299 cells were analyzed by CCK8, transwell, and wound healing assay after LDB2 or miR-96-5p transfection. Luciferase activities assay and western blot were used to reveal the targeted regulation between LDB2 and miR-96-5p. Results: Here the authors found LDB2 was down-regulated in lung cancer tissues and negatively correlated with miR-96-5p expression, it could promote or inhibit the proliferation, invasion and metastasis of H1299 cells after LDB2 knockdown or overexpression and regulate the expression of cyclinD1, MMP9, Bcl-2, and Bax via ERK1/2 signaling pathway. Furthermore, miR-96-5p exerted its function by directly binding to 3′-UTR of LDB2 and regulating expression of LDB2. miR-96-5p could promote the proliferation, invasion, and metastasis of H1299 cells. Conclusion: These findings demonstrate that LDB2 can act as a new regulator to inhibit cell proliferation, invasion, and metastasis via the ERK1/2 signaling pathway, and miR-96-5p may be a potential promising molecular by targeting LDB2 in lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL