Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Int J Mol Med ; 54(6)2024 Dec.
Article in English | MEDLINE | ID: mdl-39364755

ABSTRACT

SS­31 is a mitochondria­targeting antioxidant that exhibits promising therapeutic potential for various diseases; however, its protective effect on diabetic cardiomyopathy (DCM) remains to be elucidated. At present, SS­31 is considered not only to mitigate cardiolipin oxidative damage, but also to alleviate ferroptosis. The present study aimed to explore SS­31 as a potential therapeutic strategy for improving DCM by alleviating mitochondria­dependent ferroptosis. In vitro, H9C2 cells were exposed to 35 mM glucose for 24 h to induce high glucose damage, then were simultaneously treated with 10, 20 or 50 µM SS­31. In addition, in vivo studies were conducted on diabeticC57BL/6J mice, which were induced to develop DCM over 4 weeks, followed by intraperitoneal injections with 2.5 mg/kg/day SS­31 for a further 4 weeks. The elevation of serum lactate dehydrogenase and creatine kinase isoenzymes, the reduction of fractional shortening and ejection fraction, the rupture of myocardial fibers and the deposition of collagen indicated the establishment of the DCM mouse model. The results of the present study indicated that SS­31 effectively alleviated these pathological changes and exhibited significant efficacy in ameliorating mitochondrial dysfunction, such as by promoting adenosine triphosphate generation, improving mitochondrial membrane potential and restoring the mitochondrial ultrastructure. Further experiments suggested that activation of the mitochondrial glutathione (mitoGSH)/mitochondrial glutathione peroxidase 4 (mitoGPX4) pathway and the elimination of mitochondrial ferrous ions may constitute the mechanisms by which SS­31 treats DCM. Therefore, the present study revealed that mitochondria­dependent ferroptosis could serve as a pathogenic mechanism of DCM and highlighted that the cardioprotective effects of SS­31 against DCM involves activation of the mitoGSH/mitoGPX4 pathway. Due to the safety profile and cardiac protective effects of SS­31, SS­31 was considered a promising strategy for treating DCM.


Subject(s)
Diabetic Cardiomyopathies , Ferroptosis , Animals , Ferroptosis/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Mice , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Rats , Oxidative Stress/drug effects , Disease Models, Animal , Oligopeptides
2.
Free Radic Biol Med ; 221: 215-224, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38796028

ABSTRACT

BACKGROUND: Neutrophil extracellular traps (NETs) induce oxidative stress, which may initiate ferroptosis, an iron-dependent programmed cell death, during abdominal aortic aneurysm (AAA) formation. Mitochondria regulate the progression of ferroptosis, which is characterized by the depletion of mitochondrial glutathione (mitoGSH) levels. However, the mechanisms are poorly understood. This study examined the role of mitoGSH in regulating NET-induced ferroptosis of smooth muscle cells (SMCs) during AAA formation. METHODS: Concentrations of NET markers were tested in plasma samples. Western blotting and immunofluorescent staining were performed to detect the expression and localization of NET and ferroptosis markers in tissue samples. The role of NETs and SMC ferroptosis during AAA formation was investigated using peptidyl arginine deiminase 4 gene (Padi4) knockout or treatment with a PAD4 inhibitor, ferroptosis inhibitor or activator in an angiotensin II-induced AAA mouse model. The regulatory effect of SLC25A11, a mitochondrial glutathione transporter, on mitoGSH and NET-induced ferroptosis of SMCs was investigated using in vitro and in vivo experiments. Transmission electron microscopy was used to detect mitochondrial damage. Blue native polyacrylamide gel electrophoresis was used to analyze the dimeric and monomeric forms of the protein. RESULTS: Significantly elevated levels of NETosis and ferroptosis markers in aortic tissue samples were observed during AAA formation. Specifically, NETs promoted AAA formation by inducing ferroptosis of SMCs. Subsequently, SLC25A11 was identified as a potential biomarker for evaluating the clinical prognosis of patients with AAA. Furthermore, NETs decreased the stability and dimerization of SLC25A11, leading to the depletion of mitoGSH. This depletion induced the ferroptosis of SMCs and promoted AAA formation. CONCLUSION: During AAA formation, NETs regulate the stability of the mitochondrial carrier protein SLC25A11, leading to the depletion of mitoGSH and subsequent activation of NET-induced ferroptosis of SMCs. Preventing mitoGSH depletion and ferroptosis in SMCs is a potential strategy for treating AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Extracellular Traps , Ferroptosis , Glutathione , Mitochondria , Myocytes, Smooth Muscle , Protein-Arginine Deiminase Type 4 , Ferroptosis/genetics , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/chemically induced , Animals , Mice , Extracellular Traps/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Humans , Glutathione/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Protein-Arginine Deiminase Type 4/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Disease Models, Animal , Oxidative Stress , Neutrophils/metabolism , Neutrophils/pathology , Mice, Knockout , Mice, Inbred C57BL , Angiotensin II/metabolism
3.
Front Pharmacol ; 13: 1055793, 2022.
Article in English | MEDLINE | ID: mdl-36532757

ABSTRACT

Ferroptosis relies on iron, and ferroptotic cell death is triggered when the balance of the oxidation-reduction system is disrupted by excessive lipid peroxide accumulation. A close relationship between ferroptosis and nonalcoholic steatohepatitis (NASH) is formed by phospholipid peroxidation substrates, bioactive iron, and reactive oxygen species (ROS) neutralization systems. Recent studies into ferroptosis during NASH development might reveal NASH pathogenesis and drug targets. Our review summarizes NASH pathogenesis from the perspective of ferroptosis mechanisms. Further, we discuss the relationship between mitochondrial dysfunction, ferroptosis, and NASH. Finally, potential pharmacological therapies directed to ferroptosis in NASH are hypothesized.

4.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360529

ABSTRACT

Nowadays, type II diabetes mellitus, more specifically ensuing diabetic nephropathy, and severe COVID-19 disease are known to be closely associated. The exact mechanisms behind this association are less known. An implication for the angiotensin-converting enzyme 2 remains controversial. Some researchers have started looking into other potential actors, such as neuropilin-1, mitochondrial glutathione, vitamin D, and DPP4. In particular, neuropilin-1 seems to play an important role in the underlying mechanism linking COVID-19 and diabetic nephropathy. We suggest, based on the findings in this review, that its up-regulation in the diabetic kidney facilitates viral entry in this tissue, and that the engagement of both processes leads to a depletion of neuropilin-1, which was demonstrated to be strongly associated with the pathogenesis of DN. More studies are needed to confirm this hypothesis, and research should be directed towards elucidating the potential roles of all these suggested actors and eventually discovering new therapeutic strategies that could reduce the burden of COVID-19 in patients with diabetic nephropathy.


Subject(s)
COVID-19/complications , COVID-19/immunology , Diabetic Nephropathies/complications , Diabetic Nephropathies/immunology , Angiotensin-Converting Enzyme 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Glutathione/metabolism , Humans , Neuropilin-1/metabolism , Severe acute respiratory syndrome-related coronavirus/immunology , Vitamin D/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL