Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Infect Genet Evol ; 116: 105523, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37940011

ABSTRACT

Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.


Subject(s)
Cannabis , RNA Viruses , Cannabis/genetics , Phylogeny , RNA Viruses/genetics , Mitochondria/genetics , Fungi
2.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1649-1664, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37039888

ABSTRACT

Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.


Subject(s)
Induced Pluripotent Stem Cells , Schizophrenia , Adult , Humans , Schizophrenia/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Reactive Oxygen Species/metabolism , Proteomics , Cell Cycle Checkpoints , Mitochondria/metabolism
3.
Mol Biol Rep ; 49(12): 12269-12273, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36264418

ABSTRACT

BACKGROUND: Caryophylliidae is one of the most diverse scleractinian families, however it was recovered as polyphyletic in multiple molecular studies. Recently, the mitochondrial gene order was proposed as a character for a taxonomic revision of the family. Here we describe the first mitogenome of the caryophylliid genus Crispatotrochus, whose phylogenetic position remains uncertain. METHODS AND RESULTS: The complete mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus were sequenced, assembled, and annotated. The two mitogenomes are identical and circular, have a length of 16,536 bp, a GC content of 35.9%, and contain 13 protein-coding genes, 2 ribosomal RNAs and 2 transfer RNAs. Both species have a transposition of a three gene block - cob, nad2, and nad6 - similarly to a group of caryophylliid genera that were recovered as monophyletic, including the type genus (Caryophyllia) of the family. The phylogenetic analyses recovered Crispatotrochus within the clade that presents the gene rearrangement and specifically as sister taxa of the genus Caryophyllia, a result consistent with previous studies and the similar gross morphology of the two genera. CONCLUSIONS: We determined the mitochondrial genomes of the genus Crispatotrochus to investigate their relations within Scleractinia. Results from this study provide insights on the phylogenetic position of the genus and corroborate that the mitochondrial gene order could be used as taxonomic character for the family Caryophylliidae.


Subject(s)
Anthozoa , Genome, Mitochondrial , Animals , Anthozoa/genetics , Gene Order , Genes, Mitochondrial , Genome, Mitochondrial/genetics , Phylogeny
4.
PeerJ ; 10: e14114, 2022.
Article in English | MEDLINE | ID: mdl-36275467

ABSTRACT

Psychotria viridis (Rubioideae: Rubiaceae), popularly known as chacrona, is commonly found as a shrub in the Amazon region and is well-known to produce psychoactive compounds, such as the N,N-dimethyltryptamine (DMT). Together with the liana Banisteropsis caapi, P. viridis is one of the main components of the Amerindian traditional, entheogenic beverage known as ayahuasca. In this work, we assembled and annotated the organellar genomes (ptDNA and mtDNA), presenting the first genomics resources for this species. The P. viridis ptDNA exhibits 154,106 bp, encoding all known ptDNA gene repertoire found in angiosperms. The Psychotria genus is a complex paraphyletic group, and according to phylogenomic analyses, P. viridis is nested in the Psychotrieae clade. Comparative ptDNA analyses indicate that most Rubiaceae plastomes present conserved ptDNA structures, often showing slight differences at the junction sites of the major four regions (LSC-IR-SSC). For the mitochondrion, assembly graph-based analysis supports a complex mtDNA organization, presenting at least two alternative and circular mitogenomes structures exhibiting two main repeats spanning 24 kb and 749 bp that may symmetrically isomerize the mitogenome into variable arrangements and isoforms. The circular mtDNA sequences (615,370 and 570,344 bp) encode almost all plant mitochondrial genes (except for the ccmC, rps7, rps10, rps14, rps19, rpl2 and rpl16 that appears as pseudogenes, and the absent genes sdh3, rps2, rsp4, rsp8, rps11, rpl6, and rpl10), showing slight variations related to exclusive regions, ptDNA integration, and relics of previous events of LTR-RT integration. The detection of two mitogenomes haplotypes is evidence of heteroplasmy as observed by the complex organization of the mitochondrial genome using graph-based analysis. Taken together, these results elicit the primary insights into the genome biology and evolutionary history of Psychotria viridis and may be used to aid strategies for conservation of this sacred, entheogenic species.


Subject(s)
Banisteriopsis , Psychotria , Rubiaceae , Psychotria/genetics , Banisteriopsis/chemistry , Rubiaceae/genetics , Plants , DNA, Mitochondrial/genetics
5.
Autoimmunity ; 55(8): 497-505, 2022 12.
Article in English | MEDLINE | ID: mdl-35978536

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous, multisystemic autoimmune disease with a broad clinical spectrum. Loss of self-tolerance and chronic inflammation are critical markers of SLE pathogenesis. Although alterations in adaptive immunity are widely recognized, increasing reports indicate the role of mitochondrial dysfunction in activating pathogenic pathways involving the innate immune system. Among these, disarrangements in mitochondrial DNA copy number and heteroplasmy percentage are related to SLE activity. Furthermore, increased oxidative stress contributes to post-translational changes in different molecules (proteins, nucleic acids, and lipids), release of oxidized mitochondrial DNA through a pore of voltage-dependent anion channel oligomers, and spontaneous mitochondrial antiviral signaling protein oligomerization. Finally, a reduction in mitophagy, apoptosis induction, and NETosis has been reported in SLE. Most of these pathways lead to persistent and inappropriate exposure to oxidized mitochondrial DNA, which can stimulate plasmacytoid dendritic cells, enhance autoreactive lymphocyte activation, and release increased amounts of interferons through stimulation of toll-like receptors and cytosolic DNA sensors. Likewise, abnormal T-cell receptor activation, decreased regulatory T cells, enhanced Th17 phenotypes, and increased monocyte maturation to dendritic cells have also been observed in SLE. Targeting the players involved in mitochondrial damage can ultimately help.


Subject(s)
Lupus Erythematosus, Systemic , Antiviral Agents/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Interferons/metabolism , Lipids , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Antigen, T-Cell/metabolism , Toll-Like Receptors/metabolism
6.
Parasitol Int ; 91: 102647, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35985636

ABSTRACT

A series of 1-aryl-4-(phthalimidoalkyl) piperazines and 1-aryl-4-(naphthalimidoalkyl) piperazines were retrieved from a proprietary library based on their high structural similarity to haloperidol, an antipsychotic with antiparasitic activity, and assessed as potential antileishmanial scaffolds. Selected compounds were tested for antileishmanial activity against promastigotes of Leishmania major and Leishmania mexicana in dose-response assays. Two of the 1-aryl-4-(naphthalimidoalkyl) piperazines (compounds 10 and 11) were active against promastigotes of both Leishmania species without being toxic to human fibroblasts. Their activity was found to correlate with the length of their alkyl chains. Further analyses showed that compound 11 was also active against intracellular amastigotes of both Leishmania species. In promastigotes of both Leishmania species, compound 11 induced collapse of the mitochondrial electrochemical potential and increased the intracellular Ca2+ concentration. Therefore, it may serve as a promising lead compound for the development of novel antiparasitic drugs.


Subject(s)
Antiprotozoal Agents , Leishmania major , Leishmania mexicana , Antiparasitic Agents , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Humans , Piperazines/pharmacology
7.
Front Cell Infect Microbiol ; 12: 920425, 2022.
Article in English | MEDLINE | ID: mdl-35782121

ABSTRACT

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Humans , Mosquito Vectors , Proteome , Proteomics
8.
Antioxid Redox Signal ; 36(13-15): 864-884, 2022 05.
Article in English | MEDLINE | ID: mdl-34155914

ABSTRACT

Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.


Subject(s)
NADP Transhydrogenase, AB-Specific , NADP Transhydrogenases , Animals , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , NAD , NADP/metabolism , NADP Transhydrogenase, AB-Specific/genetics , NADP Transhydrogenase, AB-Specific/metabolism , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism , Protons
9.
Mem. Inst. Oswaldo Cruz ; 117: e210379, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1360601

ABSTRACT

The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are etiological agents of important neglected tropical diseases, affecting millions of people worldwide, and the drugs available for these diseases present several limitations. Novel efficient and nontoxic drugs are necessary as an alternative to the current chemotherapy. The unique mitochondrion of trypanosomatids and its peculiar features turn this organelle a potential drug target. Several phenotypic studies describe the damage in the parasite mitochondrial ultrastructure, but the molecular target is unknown. Few reports demonstrated the electron transport system (ETS) as a target due to the high similarities to mammalian orthologues, hence ETS is not a good candidate for drug intervention. On the other hand, antioxidant enzymes, such as trypanothione reductase, and an alternative oxidase (AOX) seem to be interesting targets; however no high active inhibitors were developed up to now. Finally, due to the remarkable differences to mammalian machinery, together with the high biological importance for the parasite survival, the mitochondrial import system stands out as a very promising target in trypanosomatids. Archaic translocase of the outer membrane (ATOM) and translocase of the inner membrane (TIM) complexes, which mediate both protein and tRNA import, composed by specific subunits of these parasites, could be excellent candidates, deserving studies focused on the development of specific drugs.

10.
Mem. Inst. Oswaldo Cruz ; 117: e220396, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1365148

ABSTRACT

Over the past years, natural products have been explored in order to find biological active substances to treat various diseases. Regarding their potential action against parasites such as trypanosomatids, specially Trypanosoma cruzi and Leishmania spp., much advance has been achieved. Extracts and purified molecules of several species from genera Piper, Tanacetum, Porophyllum, and Copaifera have been widely investigated by our research group and exhibited interesting antitrypanosomal and antileishmanial activities. These natural compounds affected different structures in parasites, and we believe that the mitochondrion is a strategic target to induce parasite death. Considering that these trypanosomatids have a unique mitochondrion, this cellular target has been extensively studied aiming to find more selective drugs, since the current treatment of these neglected tropical diseases has some challenges such as high toxicity and prolonged treatment time. Here, we summarise some results obtained with natural products from our research group and we further highlighted some strategies that must be considered to finally develop an effective chemotherapeutic agent against these parasites.

11.
Front Genet ; 12: 727314, 2021.
Article in English | MEDLINE | ID: mdl-34630521

ABSTRACT

Allopolyploidy is widely present across plant lineages. Though estimating the correct phylogenetic relationships and origin of allopolyploids may sometimes become a hard task. In the genus Stylosanthes Sw. (Leguminosae), an important legume crop, allopolyploidy is a key speciation force. This makes difficult adequate species recognition and breeding efforts on the genus. Based on comparative analysis of nine high-throughput sequencing (HTS) samples, including three allopolyploids (S. capitata Vogel cv. "Campo Grande," S. capitata "RS024" and S. scabra Vogel) and six diploids (S. hamata Taub, S. viscosa (L.) Sw., S. macrocephala M. B. Ferreira and Sousa Costa, S. guianensis (Aubl.) Sw., S. pilosa M. B. Ferreira and Sousa Costa and S. seabrana B. L. Maass & 't Mannetje) we provide a working pipeline to identify organelle and nuclear genome signatures that allowed us to trace the origin and parental genome recognition of allopolyploids. First, organelle genomes were de novo assembled and used to identify maternal genome donors by alignment-based phylogenies and synteny analysis. Second, nuclear-derived reads were subjected to repetitive DNA identification with RepeatExplorer2. Identified repeats were compared based on abundance and presence on diploids in relation to allopolyploids by comparative repeat analysis. Third, reads were extracted and grouped based on the following groups: chloroplast, mitochondrial, satellite DNA, ribosomal DNA, repeat clustered- and total genomic reads. These sets of reads were then subjected to alignment and assembly free phylogenetic analyses and were compared to classical alignment-based phylogenetic methods. Comparative analysis of shared and unique satellite repeats also allowed the tracing of allopolyploid origin in Stylosanthes, especially those with high abundance such as the StyloSat1 in the Scabra complex. This satellite was in situ mapped in the proximal region of the chromosomes and made it possible to identify its previously proposed parents. Hence, with simple genome skimming data we were able to provide evidence for the recognition of parental genomes and understand genome evolution of two Stylosanthes allopolyploids.

12.
Front Microbiol ; 12: 617504, 2021.
Article in English | MEDLINE | ID: mdl-33935988

ABSTRACT

Chagas disease, which is caused by Trypanosoma cruzi, establishes lifelong infections in humans and other mammals that lead to severe cardiac and gastrointestinal complications despite the competent immune response of the hosts. Furthermore, it is a neglected disease that affects 8 million people worldwide. The scenario is even more frustrating since the main chemotherapy is based on benznidazole, a drug that presents severe side effects and low efficacy in the chronic phase of the disease. Thus, the search for new therapeutic alternatives is urgent. In the present study, we investigated the activity of a novel phenyl-tert-butyl-nitrone (PBN) derivate, LQB303, against T. cruzi. LQB303 presented trypanocidal effect against intracellular [IC50/48 h = 2.6 µM] and extracellular amastigotes [IC50/24 h = 3.3 µM] in vitro, leading to parasite lysis; however, it does not present any toxicity to host cells. Despite emerging evidence that mitochondrial metabolism is essential for amastigotes to grow inside mammalian cells, the mechanism of redox-active molecules that target T. cruzi mitochondrion is still poorly explored. Therefore, we investigated if LQB303 trypanocidal activity was related to the impairment of the mitochondrial function of amastigotes. The investigation showed there was a significant decrease compared to the baseline oxygen consumption rate (OCR) of LQB303-treated extracellular amastigotes of T. cruzi, as well as reduction of "proton leak" (the depletion of proton motive force by the inhibition of F1Fo ATP synthase) and "ETS" (maximal oxygen consumption after uncoupling) oxygen consumption rates. Interestingly, the residual respiration ("ROX") enhanced about three times in LQB303-treated amastigotes. The spare respiratory capacity ratio (SRC: cell ability to meet new energy demands) and the ATP-linked OCR were also impaired by LQB303 treatment, correlating the trypanocidal activity of LQB303 with the impairment of mitochondrial redox metabolism of amastigotes. Flow cytometric analysis demonstrated a significant reduction of the ΔΨm of treated amastigotes. LQB303 had no significant influence on the OCR of treated mammalian cells, evidencing its specificity against T. cruzi mitochondrial metabolism. Our results suggest a promising trypanocidal activity of LQB303, associated with parasite bioenergetic inefficiency, with no influence on the host energy metabolism, a fact that may point to an attractive alternative therapy for Chagas disease.

13.
Rev. bras. ciênc. avic ; 23(4): eRBCA, 2021. ilus, graf
Article in English | VETINDEX | ID: biblio-1490896

ABSTRACT

To determine the effect of Qingchang Oral Liquid (QOL) on second generation merozoite of chicken E. tenella, healthy Roman pink chickens were randomly divided into model group and QOL group (drug group), and both groups of chicks were inoculated with 5×104 sporulated oocysts by oral gavage. Then, the drug group was given QOL at a dose of 2.4 ml/kg, and the model group was given the same volume of normal saline. After 120 hours of inoculation, both groups of experimental chickens were killed at the same time, their caecum tissues were collected, the second generation merozoite were separated, the ultra-microstructure of the second generation merozoite were observed with transmission electron microscope and the mitochondrial membrane potential and apoptosis proportion of the second generation merozoite were analyzed with flow cytometer. The current results suggested that QOL could cause swelling and vacuoles of mitochondria, swelling of endoplasmic reticulum and damage of outer membrane in the second generation merozoite of E. tenella. Compared with the model group, the drug group could increase the total apoptosis rate of the second generation merozoite (p<0.01), and reduce the depolarization rate of mitochondrial membrane potential (p<0.01). Conclusion: QOL can directly affect the outer membrane and mitochondria of the second generation merozoite of E. tenella, reduce the depolarization rate of mitochondrial membrane potential of the second generation merozoite and increase the apoptosis rate of the second generation merozoite.


Subject(s)
Female , Animals , Apoptosis , Chickens/growth & development , Chickens/physiology , Merozoites
14.
R. bras. Ci. avíc. ; 23(4): eRBCA-2021-1477, 2021. ilus, graf
Article in English | VETINDEX | ID: vti-765866

ABSTRACT

To determine the effect of Qingchang Oral Liquid (QOL) on second generation merozoite of chicken E. tenella, healthy Roman pink chickens were randomly divided into model group and QOL group (drug group), and both groups of chicks were inoculated with 5×104 sporulated oocysts by oral gavage. Then, the drug group was given QOL at a dose of 2.4 ml/kg, and the model group was given the same volume of normal saline. After 120 hours of inoculation, both groups of experimental chickens were killed at the same time, their caecum tissues were collected, the second generation merozoite were separated, the ultra-microstructure of the second generation merozoite were observed with transmission electron microscope and the mitochondrial membrane potential and apoptosis proportion of the second generation merozoite were analyzed with flow cytometer. The current results suggested that QOL could cause swelling and vacuoles of mitochondria, swelling of endoplasmic reticulum and damage of outer membrane in the second generation merozoite of E. tenella. Compared with the model group, the drug group could increase the total apoptosis rate of the second generation merozoite (p<0.01), and reduce the depolarization rate of mitochondrial membrane potential (p<0.01). Conclusion: QOL can directly affect the outer membrane and mitochondria of the second generation merozoite of E. tenella, reduce the depolarization rate of mitochondrial membrane potential of the second generation merozoite and increase the apoptosis rate of the second generation merozoite.(AU)


Subject(s)
Animals , Female , Chickens/growth & development , Chickens/physiology , Merozoites , Apoptosis
15.
Mitochondrial DNA B Resour ; 5(1): 388-389, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-33366569

ABSTRACT

The first complete mitochondrial genome (mtDNA) for the family Phyllomedusidae (genus Pithecopus) is presented. It is a circular molecule with 17713 pb including 13 protein coding genes, 22 tRNA genes, two rRNA genes, and a control region (D-loop). Pithecopus megacephalus was close to the only other phyllomedusid whose complete mtDNA sequence is available, but had the cytb gene 147 pb smaller.

16.
Plant J ; 103(2): 690-704, 2020 07.
Article in English | MEDLINE | ID: mdl-32248588

ABSTRACT

Mutations in SURFEIT1 (SURF1) genes affect cytochrome c oxidase (COX) levels in different prokaryotic and eukaryotic organisms. In this work, we report that Arabidopsis thaliana has two genes that potentially encode SURF1 proteins, as a result of a duplication that took place in Brassicaceae. Both genes encode mitochondrial proteins and mutation in AtSURF1a causes embryonic lethality. Mutation in AtSURF1b, instead, causes defects in hypocotyl elongation under growth-stimulating conditions, such as low light intensity, increased ambient temperature and incubation with glucose. Mutants in AtSURF1b show reduced expression of the auxin reporter DR5:GUS and increased levels of the gibberellin reporter GFP-RGA, suggesting that auxin and gibberellin homeostasis are affected. In agreement, growth defects caused by AtSURF1b mutation can be overcome by treatment with indole-3-acetic acid and gibberellin A3 , and also by increasing expression of the auxin biosynthesis gene YUC8 or the transcription factor PIF4, which shows lower abundance in AtSURF1b-deficient plants. Mutants in AtSURF1b display lower COX levels, higher alternative oxidase and superoxide levels, and increased expression of genes that respond to mitochondrial dysfunction. Decreased hypocotyl growth and DR5:GUS expression can be reversed by treatment with reduced glutathione, suggesting that redox changes, probably related to mitochondrial dysfunction, are responsible for the effect of AtSURF1b deficiency on hormone responses. The results indicate that changes in AtSURF1b affect mitochondrial function and the production of reactive oxygen species, which, in turn, impinges on a growth regulatory circuit that involves auxin, gibberellins and the transcription factor PIF4.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genes, Plant/genetics , Membrane Proteins/genetics , Mitochondria/physiology , Mitochondrial Proteins/genetics , Plant Growth Regulators/physiology , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Gene Duplication/genetics , Genes, Plant/physiology , Membrane Proteins/physiology , Mitochondria/genetics , Mitochondrial Proteins/physiology , Plant Growth Regulators/genetics , Seeds/growth & development
17.
Acta Trop ; 195: 6-14, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31002807

ABSTRACT

Leishmaniases are infectious diseases caused by protozoan parasites Leishmania and transmitted by sand flies. Drug repurposing is a therapeutic approach that has shown satisfactory results in their treatment. Analyses of antihistaminic drugs have revealed their in vitro and in vivo activity against trypanosomatids. In this way, this study evaluated the antileishmanial activity of H1-antihistamines and identified the cellular alterations in Leishmania (L.) infantum. Cinnarizine, cyproheptadine, and meclizine showed activity against promastigotes with 50% inhibitory concentration (IC50) values between 10-29 µM. These drugs also demonstrated activity and selectivity against intracellular amastigotes, with IC50 values between 20-35 µM. Fexofenadine and cetirizine lacked antileishmanial activity against both forms. Mammalian cytotoxicity studies revealed 50% cytotoxic concentration values between 52 - >200 µM. These drugs depolarized the mitochondria membrane of parasites and caused morphological alterations, including mitochondrial damage, disorganization of the intracellular content, and nuclear membrane detachment. In conclusion, the L. infantum death may be ascribed by the subcellular alterations followed by a pronounced decrease in the mitochondrial membrane potential, indicating dysfunction in the respiratory chain upon H1-antihistamine treatment. These H1-antihistamines could be used to explore new routes of cellular death in the parasite and the determination of the targets at a molecular level, would contribute to understanding the potential of these drugs as antileishmanial.


Subject(s)
Antiprotozoal Agents/pharmacology , Histamine H1 Antagonists/pharmacology , Leishmania infantum/drug effects , Animals , Female , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C
18.
Mitochondrial DNA B Resour ; 5(1): 233-235, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-33366501

ABSTRACT

In this study, we report the first complete mitochondrial genome sequence of the Aquatic Coralsnake Micrurus surinamensis. The mitochondrial genome lengthis 17,375 bp, comprising 13 protein-coding genes, 2 rRNA (12S and 16S) and 22 tRNA, as well as two typical control regions. Phylogenetic analysis based upon 13 protein-coding genes showed clusters based on terrestrial and marine species.

19.
Zygote ; 26(4): 251-260, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30223916

ABSTRACT

SummaryDespite sperm mitochondrial relevance to the fertilization capacity, the processes involved in the production of ATP and functional dynamics of sperm mitochondria are not fully understood. One of these processes is the paradox involved between function and formation of reactive oxygen species performed by the organelle. Therefore, this review aimed to provide data on the role of sperm mitochondria in oxidative homeostasis and functionality as well the tools to assess sperm mitochondrial function.


Subject(s)
Mitochondria/physiology , Oxidative Stress , Sperm Motility , Spermatozoa/physiology , Animals , Homeostasis , Humans , Male , Reactive Oxygen Species
20.
Plant J ; 94(1): 105-121, 2018 04.
Article in English | MEDLINE | ID: mdl-29385297

ABSTRACT

We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.


Subject(s)
Arabidopsis/growth & development , Cytochromes c/metabolism , Gibberellins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cytochromes c/deficiency , Cytochromes c/physiology , Energy Metabolism , Gene Expression Regulation, Plant , Gibberellins/physiology , Glucose/metabolism , Homeostasis , Mitochondria/metabolism , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL