Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.158
Filter
1.
Talanta ; 279: 126589, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39116730

ABSTRACT

In this study, we employed the dithiothreitol-based protein equalisation technique and analytical proteomics to better understand myeloma diseases by comparing the proteomes of pellets and supernatants formed upon application of DTT on serum samples. The number of unique proteins found in pellets was 252 for healthy individuals and 223 for multiple myeloma patients. The comparison of these proteomes showed 97 dysregulated proteins. The unique proteins found for supernatants were 264 for healthy individuals and 235 for multiple myeloma patients. The comparison of these proteomes showed 87 dysregulated proteins. The analytical proteomic comparison of both groups of dysregulated proteins is translated into parallel dysregulated pathways, including chaperone-mediated autophagy and protein folding, addressing potential therapeutic interventions. Future research endeavours in personalised medicine should prioritize refining analytical proteomic methodologies using serum dithiothreitol-based protein equalisation to explore innovative therapeutic strategies. We highlight the advanced insights gained from this analytical strategy in studying multiple myeloma, emphasising its complex nature and the critical role of personalised, targeted analytical techniques in enhancing therapeutic efficacy in personalised medicine.

2.
Acta Biomater ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117115

ABSTRACT

A goal of regenerative engineering is the rational design of materials to restore the structure-function relationships that drive reparative programs in damaged tissues. Despite the widespread use of extracellular matrices for engineering tissues, their application has been limited by a narrow range of tunable features. The primary objective of this study is to develop a versatile platform for evaluating tissue-specific cellular interactions using Type I collagen scaffolds with highly tunable biophysical properties. The kinetics of collagen fibrillogenesis were modulated through a combination of varied shear rate and pH, during neutralization, to achieve a broad range of fibril anisotropy, porosity, diameter, and storage modulus. The role that each of these properties play in guiding muscle, bone, and vascular cell types was comprehensively identified and informed the in vitro generation of three distinct musculoskeletal engineered constructs. Myogenesis was highly regulated by smaller fibrils and larger storage moduli, endothelial inflammatory phenotype was predominantly guided by fibril anisotropy, and osteogenesis was enhanced by highly porous collagen with larger fibrils. This study introduces a novel approach for dynamically modulating Type I collagen materials and provides a robust platform for investigating cell-material interactions, offering insights for future rational design of tissue-specific regenerative biomaterials. STATEMENT OF SIGNIFICANCE: The biophysical properties of regenerative materials facilitate key cell-substrate interactions that can guide the morphology, phenotype, and biological response of cells. In this study, we describe the fabrication of an engineered collagen hydrogel that can be modified to exhibit control over a wide range of biophysical features including fibril organization and size, nanoscale porosity, and mechanics. We identified the unique combination of collagen features that optimally promote regenerative muscle, bone, and vascular cell types while also delineating the properties that hinder these same cellular responses. This study presents a highly accessible method to control the biophysical properties of collagen hydrogels that can be adapted for a broad range of tissue engineering and regenerative applications.

3.
ACS Nano ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108203

ABSTRACT

Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.

4.
Front Cell Infect Microbiol ; 14: 1401462, 2024.
Article in English | MEDLINE | ID: mdl-39091675

ABSTRACT

Introduction: Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods: Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion: Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.


Subject(s)
Limosilactobacillus reuteri , Macrophages , Probiotics , Uropathogenic Escherichia coli , Probiotics/pharmacology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/immunology , Limosilactobacillus reuteri/physiology , Animals , Mice , Macrophages/immunology , Macrophages/microbiology , Humans , Urothelium/microbiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/prevention & control , Cell Line , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , RAW 264.7 Cells , Epithelial Cells/microbiology , Chickens , Bacterial Adhesion/drug effects
6.
Br J Pain ; 18(4): 314-324, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092209

ABSTRACT

Chronic spinal pain has negative effects on physical and mental well-being. Psychological factors can influence pain tolerance. However, whether these factors influence descending modulatory control mechanisms measured by conditioned pain modulation (CPM) in people with chronic spinal pain is unclear. This systematic review investigated the association between CPM response and psychological factors in people with chronic spinal pain. Published and unpublished literature databases were searched from inception to 23rd October 2023 included MEDLINE, EMBASE, CINAHL, and PubMed. Studies assessing the association between CPM response and psychological factors in people with chronic spinal pain were eligible. Data were pooled through meta-analysis. Methodological quality was assessed using the AXIS tool and the certainty of evidence measured through GRADE. From 2172 records, seven studies (n = 598) were eligible. Quality of included studies was moderate. There was very low certainty of evidence that depression (r = 0.01 [95% CI -0.10 to 0.12], I2 = 0%), and anxiety (r = -0.20 [95% CI -0.56 to 0.16], I2 = 84%), fear avoidance (r = -0.10 [95% CI -0.30 to 0.10], I2 = 70%) had no statistical associations with CPM responder status. Higher pain catastrophising was associated with CPM non-responder status (r = -0.19; 95% CI: -0.37 to -0.02; n = 545; I2: 76%) based on a very low certainty of evidence measured by GRADE. There is currently limited available evidence demonstrating an association between CPM response and psychological factors for people with chronic pain. Managing an individual's chronic pain symptoms irrespective of comorbid psychological distress, should continue until evidence offer insights that more targeted interventions are needed.

7.
Vision Res ; 223: 108460, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094263

ABSTRACT

Neon color spreading (NCS) is an illusory color phenomenon that provides a dramatic example of surface completion and filling-in. Numerous studies have varied both spatial and temporal aspects of the neon-generating stimulus to explore variations in the strength of the effect. Here, we take a novel, parametric, low-level psychophysical approach to studying NCS in two experiments. In Experiment 1, we test the ability of both cone-isolating and equiluminant stimuli to generate neon color spreading for both increments and decrements in cone modulations. As expected, sensitivity was low to S(hort-wavelength) cone stimuli due to their poor spatial resolution, but sensitivity was similar for the other color directions. We show that when these differences in detection sensitivity are accounted for, the particular cone type, and the polarity (increment or decrement), make little difference in generating neon color spreading, with NCS visible at about twice detection threshold level in all cases. In Experiment 2, we use L-cone flicker modulations (reddish and greenish excursions around grey) to study sensitivity to NCS as a function of temporal frequency from 0.5 to 8 Hz. After accounting for detectability, the temporal contrast sensitivity functions for NCS are approximately constant or even increase over the studied frequency range. Therefore there is no evidence in this study that the processes underlying NCS are slower than the low-level processes of simple flicker detection. These results point to relatively fast mechanisms, not slow diffusion processes, as the substrate for NCS.

8.
Sci Rep ; 14(1): 18158, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103454

ABSTRACT

Nonlinear optics (NLO) and its applications have attracted increasing research interest in recent years owing to their contribution to the development of photonic technology. Accordingly, in this study, we investigated the NLO response of pumpkin seed oil using the spatial self-phase modulation (SSPM) method. Significant NLO characteristics have been experimentally studied at 405 nm and 532 nm continuous wave (CW) laser wavelengths, yielding second-order nonlinear refractive index ( n 2 , t h ) values of 6.54 × 10 - 5 cm 2 / W and 2.73 × 10 - 5 cm 2 / W , respectively. The findings suggest that the absorption of the material leads to higher optical nonlinearity at shorter wavelengths owing to higher thermal effects. Furthermore, we implemented a light-controlled-light system based on the spatial cross-phase modulation (SXPM) technique employing pumpkin seed oil. We successfully achieved all-optical switching by designing the 'ON' and 'OFF' modes. The results of this study can be considered for the future development of NLO applications. Moreover, our work investigates the potential of pumpkin seed oil for designing low-cost and high-efficiency NLO devices, and this contribution opens up a novel practical avenue for oil-based optical devices.

9.
Front Physiol ; 15: 1415037, 2024.
Article in English | MEDLINE | ID: mdl-39086932

ABSTRACT

Background: Carbon dioxide (CO2), traditionally viewed as a mere byproduct of cellular respiration, plays a multifaceted role in human physiology beyond simple elimination through respiration. CO2 may regulate the tumor microenvironment by significantly affecting the release of oxygen (O2) to tissues through the Bohr effect and by modulating blood pH and vasodilation. Previous studies suggest hypercapnia (elevated CO2 levels) might trigger optimized cellular mechanisms with potential therapeutic benefits. The role of CO2 in cellular stress conditions within tumor environments and its impact on O2 utilization offers a new investigative area in oncology. Objectives: This study aims to explore CO2's role in the tumor environment, particularly how its physiological properties and adaptive responses can influence therapeutic strategies. Methods: By applying a structured translational approach using the Work Breakdown Structure method, the study divided the analysis into six interconnected work packages to comprehensively analyze the interactions between carbon dioxide and the tumor microenvironment. Methods included systematic literature reviews, data analyses, data integration for identifying critical success factors and exploring extracellular environment modulation. The research used SMART criteria for assessing innovation and the applicability of results. Results: The research revealed that the human body's adaptability to hypercapnic conditions could potentially inform innovative strategies for manipulating the tumor microenvironment. This could enhance O2 utilization efficiency and manage adaptive responses to cellular stress. The study proposed that carbon dioxide's hormetic potential could induce beneficial responses in the tumor microenvironment, prompting clinical protocols for experimental validation. The research underscored the importance of pH regulation, emphasizing CO2 and carbonic acid's role in modulating metabolic and signaling pathways related to cancer. Conclusion: The study underscores CO2 as vital to our physiology and suggests potential therapeutic uses within the tumor microenvironment. pH modulation and cellular oxygenation optimization via CO2 manipulation could offer innovative strategies to enhance existing cancer therapies. These findings encourage further exploration of CO2's therapeutic potential. Future research should focus on experimental validation and exploration of clinical applications, emphasizing the need for interdisciplinary and collaborative approaches to tackle current challenges in cancer treatment.

10.
Angew Chem Int Ed Engl ; : e202412643, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101718

ABSTRACT

While metal nanoparticles (NPs) have demonstrated their great potential in catalysis, introducing chiral microenvironment around metal NPs to achieve efficient conversion and high enantioselectivity remains a long-standing challenge. In this work, tiny Rh NPs, modified by chiral diene ligands (Lx) bearing diverse functional groups, are incorporated into a covalent organic framework (COF) for the asymmetric 1,4-addition reactions between arylboronic acids and nitroalkenes. Though Rh NPs hosted in the COF are inactive, decorating Rh NPs with Lx creates the active Rh-Lx interface and induces high activity. Moreover, chiral microenvironment modulation around Rh NPs by altering the groups on chiral diene ligands greatly optimizes the enantioselectivity (up to 95.6% ee). Mechanistic investigations indicate that the formation of hydrogen-bonding interaction between Lx and nitroalkenes plays critical roles in the resulting enantioselectivity. This work highlights the significance of chiral microenvironment modulation around metal NPs by chiral ligand decoration for heterogeneous asymmetric catalysis.

11.
Pain Ther ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102098

ABSTRACT

INTRODUCTION: Chronic pain is a public health issue, leading to substantial healthcare costs and diminished quality of life for sufferers. While the role of anxiety in pain modulation has been extensively studied, the effects of other emotional states on the body's pain control mechanisms remain less understood. This study sought to explore how different emotions (happiness, anger, sadness, and interest) affect conditioned pain modulation (CPM) and the wind-up phenomenon in healthy adults. METHODS: This randomized controlled, cross-over trial involved 28 healthy participants aged 18-60. Participants watched video clips designed to induce specific emotions: happiness, anger, sadness, and interest. Emotional states were assessed using a 7-point Likert scale. Pain modulation was measured using CPM and the wind-up phenomenon. CPM was assessed with a hot water bath as the conditioning stimulus and pressure pain tolerance as the test stimulus. Wind-up was measured using pinprick needle stimulators and a visual analog scale. Data were analyzed using paired t tests to compare pre- and post-emotion induction values. RESULTS: Significant changes in emotional self-assessment values were observed for all emotions. Happiness increased CPM (4.6 ± 11.4, p = 0.04277), while sadness - 9.9 ± 23.1, p = 0.03211) and anger - 9.1 ± 23.3, p = 0.04804) decreased it. Interest did not significantly alter CPM (- 5.1 ± 25.8, p = 0.31042). No significant effects were found for the wind-up phenomenon across any emotional states. CONCLUSION: This study shows that emotional states significantly affect the body's ability to modulate pain. Positive emotions like happiness enhance pain inhibition, while negative emotions such as sadness and anger impair it. These findings suggest that emotional modulation techniques could be integrated into pain management strategies to improve patient outcomes. Further research should explore a broader range of emotions and include objective measures to validate these results.


Chronic pain is a widespread problem that affects millions of people and leads to high healthcare costs and decreased quality of life. Understanding how emotions impact pain can help us find better ways to manage it. This study looked at how different emotions (happiness, anger, sadness, and interest) affect the ability of the body to naturally control pain in healthy adults. Participants experienced different tests in a random order, like flipping a coin to decide the order. Each participant took part in all the tests to compare how different conditions affected them. We measured changes in their pain perception using two methods: conditioned pain modulation, which reflects how well the body can suppress pain after experiencing another painful stimulus, and the wind-up phenomenon, which measures how pain intensity increases with repeated stimulation. We found that emotions affected the body's ability to control pain. Sadness and anger reduced the efficacy of conditioned pain modulation, making it harder for the body to reduce pain. Happiness improved CPM, enhancing the body's natural ability to stop pain. Interest did not significantly change how pain was felt. We also did not find any significant changes in the wind-up phenomenon for any of the emotions tested. The results suggest that positive emotions like happiness can help reduce pain, while negative emotions like sadness and anger can make pain worse. This could lead to new pain management approaches that include methods to boost positive emotions and reduce negative ones.

12.
Cell Biol Toxicol ; 40(1): 64, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096436

ABSTRACT

BACKGROUND AND PURPOSE: Colorectal cancer (CRC) is a widespread malignancy with a complex and not entirely elucidated pathogenesis. This study aims to explore the role of Bifidobacterium in the urea cycle (UC) and its influence on the progression of CRC, a topic not extensively studied previously. EXPERIMENTAL APPROACH: Utilizing both bioinformatics and experimental methodologies, this research involved analyzing bacterial abundance in CRC patients in comparison to healthy individuals. The study particularly focused on the abundance of BA. Additionally, transcriptomic data analysis and cellular experiments were conducted to investigate the impact of Bifidobacterium on ammonia metabolism and mitochondrial function, specifically examining its regulation of the key UC gene, ALB. KEY RESULTS: The analysis revealed a significant decrease in Bifidobacterium abundance in CRC patients. Furthermore, Bifidobacterium was found to suppress ammonia metabolism and induce mitochondrial dysfunction through the regulation of the ALB gene, which is essential in the context of UC. These impacts contributed to the suppression of CRC cell proliferation, a finding corroborated by animal experimental results. CONCLUSIONS AND IMPLICATIONS: This study elucidates the molecular mechanism by which Bifidobacterium impacts CRC progression, highlighting its role in regulating key metabolic pathways. These findings provide potential targets for novel therapeutic strategies in CRC treatment, emphasizing the importance of microbiota in cancer progression.


Subject(s)
Bifidobacterium , Colorectal Neoplasms , Urea , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Bifidobacterium/metabolism , Humans , Urea/metabolism , Animals , Cell Proliferation , Ammonia/metabolism , Mice , Mitochondria/metabolism , Cell Line, Tumor , Male , Gastrointestinal Microbiome/physiology , Female
13.
Front Immunol ; 15: 1430057, 2024.
Article in English | MEDLINE | ID: mdl-39100678

ABSTRACT

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis, with clinical outcomes ranging from asymptomatic infections to severe invasive diseases. The innate immune system, particularly macrophages, is of paramount importance in resisting the invasion of host tissues and organs by the trophozoites of E. histolytica. Parasite-derived pathogenic factors, such as lectins, play a pivotal role in the promotion of macrophage polarization phenotypes that have undergone alteration. Nevertheless, the precise mechanisms by which E. histolytica modulates immune polarization remain largely unknown. The current study focused on the immunomodulatory effects of the Igl-C fragment of E. histolytica Gal/GalNAc lectin on macrophage polarization. These results demonstrated that Igl-C could induce the secretion of IL-1ß, IL-6, and other cytokines, activating a mixed M1/M2 polarization state. M1 polarization of macrophages occurs in the early stages and gradually transitions to M2 polarization in the later stages, which may contribute to the persistence of the infection. Igl-C induces the macrophage M1 phenotype and causes the release of immune effector molecules, including iNOS and cytokines, by activating the NF-κB p65 and JAK-STAT1 transcription factor signaling pathways. Furthermore, Igl-C supports the macrophage M2 phenotype via JAK-STAT3 and IL-4-STAT6 pathways, which activate arginase expression in later stages, contributing to the tissue regeneration and persistence of the parasite. The involvement of distinct signaling pathways in mediating this response highlights the complex interplay between the parasite and the host immune system. These findings enhance our understanding of the Igl-C-mediated pathogenic mechanisms during E. histolytica infection.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Lectins , Macrophages , Entamoeba histolytica/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Entamoebiasis/immunology , Entamoebiasis/parasitology , Animals , Mice , Lectins/metabolism , Lectins/immunology , Cytokines/metabolism , Macrophage Activation , Humans , Signal Transduction , Protozoan Proteins/immunology , Protozoan Proteins/metabolism
14.
Front Physiol ; 15: 1414100, 2024.
Article in English | MEDLINE | ID: mdl-39108537

ABSTRACT

Introduction: This study investigates the comparative efficacy of neuromodulation therapy using the EXOPULSE Mollii Suit and a structured exercise program in pain modulation and muscle oxygenation in Fibromyalgia patients. Methods: A randomized, crossover, longitudinal, and experimental study design was employed, involving 10 female Fibromyalgia patients. Participants were subjected to two distinct treatment modalities: neuromodulation therapy with the EXOPULSE Mollii Suit and a strength-based High-Intensity Interval Training (HIIT) exercise program, each conducted over 16 sessions. Outcome measures included pain severity, assessed using the Numeric Rating Scale (NRS), and muscle oxygenation variables measured via Near-Infrared Spectroscopy (NIRS). Results: Both interventions demonstrated significant reductions in NRS scores and improvements in muscle oxygenation. However, the exercise program yielded more pronounced long term basal adaptations in muscle oxygenation compared to the neuromodulation therapy. Discussion: The findings underscore the potential of integrating non-pharmacological treatments, particularly structured exercise programs, in managing Fibromyalgia. While neuromodulation therapy presents a viable alternative, the exercise regimen's capacity to induce basal muscle oxygenation adaptations suggests its superiority in addressing the complex symptoms of Fibromyalgia. Furthermore, these therapeutic approaches may enhance patients' vocational values and employability opportunities by improving their functional capabilities and overall quality of life.

15.
J Colloid Interface Sci ; 677(Pt A): 569-576, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39111092

ABSTRACT

The design and fabrication of high-performance, inexpensive and durable electrocatalyst toward hydrogen evolution reaction (HER) is supremely significant for alleviating energy crisis and environmental concerns, but still remaining challenging. Herein, we develop an experimental work based on etching and reduction strategy to reveal the remarkable effect of cation/anion co-doping in CoMoO4 on its intrinsic HER activity. The CoMoO4 with Fe and B incorporation (Fe/B-CoMoO4) exhibits a current density of 10 mA cm-2 with strikingly low potential of 38 mV coupling with Tafel slope of 51 mV dec-1, and manifesting a robust durability for 100 h with no attenuation, which is comparable to the state-of-the-art commercial Pt/C catalyst. The collective experimental and theoretical findings concomitantly illustrate that the enhanced performances are due to the strong synergistic effect resulting from the co-doping of Fe and B, which plays a pivotal role in finely tuning the electronic structure of CoMoO4, further optimizing the adsorption free energy of H intermediates and shifting the center of the d-band of Fe/B-CoMoO4 away from the Fermi level. This fantastic work highlights the critical role of foreign element incorporating for optimizing electronic structure of transition metal oxides toward HER, and offers valuable guiding principles for rational design of more efficient energy conversion devices.

16.
Biomaterials ; 312: 122743, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111233

ABSTRACT

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.

17.
Brain Res ; 1843: 149136, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098577

ABSTRACT

Sensory experience affects not only the corresponding primary sensory cortex, but also synaptic and neural circuit functions in other brain regions in a cross-modal manner. However, it remains unclear whether oligodendrocyte (OL) generation and myelination can also undergo cross-modal modulation. Here, we report that while early life short-term whisker deprivation from birth significantly reduces in the number of mature of OLs and the degree of myelination in the primary somatosensory cortex(S1) at postnatal day 14 (P14), it also simultaneously affects the primary visual cortex (V1), but not the medial prefrontal cortex (mPFC) with a similar reduction. Interestingly, when mice were subjected to long-term early whisker deprivation from birth (P0) to P35, they exhibited dramatically impaired myelination and a deduced number of differentiated OLs in regions including the S1, V1, and mPFC, as detected at P60. Meanwhile, the process complexity of OL precursor cells (OPCs) was also rduced, as detected in the mPFC. However, when whisker deprivation occurred during the mid-late postnatal period (P35 to P50), myelination was unaffected in both V1 and mPFC brain regions at P60. In addition to impaired OL and myelin development in the mPFC, long-term early whisker-deprived mice also showed deficits in social novelty, accompanied by abnormal activation of c-Fos in the mPFC. Thus, our results reveal a novel form of cross-modal modulation of myelination by sensory experience that can lead to abnormalities in social behavioral, suggesting a possible similar mechanism underlying brain pathological conditions that suffer from both sensory and social behavioral deficits, such as autism spectrum disorders.

18.
Int J Biol Macromol ; 277(Pt 4): 134417, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098688

ABSTRACT

Alpha-synuclein, encoded by the SNCA gene, is a pivotal protein implicated in the pathogenesis of synucleinopathies, including Parkinson's disease. Current approaches for modulating alpha-synuclein levels involve antisense nucleotides, siRNAs, and small molecules targeting SNCA's 5'-UTR mRNA. Here, we propose a groundbreaking strategy targeting G-quadruplex structures to effectively modulate SNCA gene expression and lowering alpha-synuclein amount. Novel G-quadruplex sequences, identified on the SNCA gene's transcription starting site and 5'-UTR of SNCA mRNAs, were experimentally confirmed for their stability through biophysical assays and in vitro experiments on human genomic DNA. Biological validation in differentiated SH-SY5Y cells revealed that well-known G-quadruplex ligands remarkably stabilized these structures, inducing the modulation of SNCA mRNAs expression, and the effective decrease in alpha-synuclein amount. Besides, a novel peptide nucleic acid conjugate, designed to selectively disrupt of G-quadruplex within the SNCA gene promoter, caused a promising lowering of both SNCA mRNA and alpha-synuclein protein. Altogether our findings highlight G-quadruplexes' key role as intriguing biological targets in achieving a notable and successful reduction in alpha-synuclein expression, pointing to a novel approach against synucleinopathies.

19.
Gut Microbes ; 16(1): 2387144, 2024.
Article in English | MEDLINE | ID: mdl-39106212

ABSTRACT

The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.


Subject(s)
Bacteriophages , Endopeptidases , Gastrointestinal Microbiome , Humans , Bacteriophages/physiology , Animals , Endopeptidases/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/virology , Bacteria/classification , Probiotics , Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy , Bacterial Infections/therapy , Viral Proteins/metabolism , Viral Proteins/genetics , Peptidoglycan/metabolism
20.
Article in English | MEDLINE | ID: mdl-39120580

ABSTRACT

Spinal cord injury poses considerable challenges, particularly in diaphragm paralysis. To address limitations in existing diaphragm pacing technologies, we report an implantable, self-driven diaphragm pacing system based on a microvibration triboelectric nanogenerator (MV-TENG). Leveraging the efficient MV-TENG, the system harvests micromechanical energy and converts this energy into pulses for phrenic nerve stimulation. In vitro tests confirm a stable MV-TENG output, while subcutaneous implantation of the device in rats results in a constant amplitude over 4 weeks with remarkable energy-harvesting efficacy. The system effectively induces diaphragmatic motor-evoked potentials, triggering contractions of the diaphragm. This proof-of-concept system has potential clinical applications in implantable phrenic nerve stimulation, presenting a novel strategy for advancing next-generation diaphragm pacing devices.

SELECTION OF CITATIONS
SEARCH DETAIL