Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Respir Physiol Neurobiol ; 260: 82-94, 2019 02.
Article in English | MEDLINE | ID: mdl-30445230

ABSTRACT

Part of the effective prediction of the pharmacokinetics of drugs (or toxic particles) requires extrapolation of experimental data sets from animal studies to humans. As the respiratory tracts of rodents and humans are anatomically very different, there is a need to study airflow and drug-aerosol deposition patterns in lung airways of these laboratory animals and compare them to those of human lungs. As a first step, interspecies computational comparison modeling of inhaled nano-to-micron size drugs (50 nm < d<15µm) was performed using mouse and human upper airway models under realistic breathing conditions. Critical species-specific differences in lung physiology of the upper airways and subsequently in local drug deposition were simulated and analyzed. In addition, a hybrid modeling methodology, combining Computational Fluid-Particle Dynamics (CF-PD) simulations with deterministic lung deposition models, was developed and predicted total and regional drug-aerosol depositions in lung airways of both mouse and man were compared, accounting for the geometric, kinematic and dynamic differences. Interestingly, our results indicate that the total particle deposition fractions, especially for submicron particles, are comparable in rodent and human respiratory models for corresponding breathing conditions. However, care must be taken when extrapolating a given dosage as considerable differences were noted in the regional particle deposition pattern. Combined with the deposition model, the particle retention and clearance kinetics of deposited nanoparticles indicates that the clearance rate from the mouse lung is higher than that in the human lung. In summary, the presented computer simulation models provide detailed fluid-particle dynamics results for upper lung airways of representative human and mouse models with a comparative analysis of particle lung deposition data, including a novel mice-to-men correlation as well as a particle-clearance analysis both useful for pharmacokinetic and toxicokinetic studies.


Subject(s)
Administration, Inhalation , Aerosols/administration & dosage , Computer Simulation , Hydrodynamics , Lung/physiology , Models, Biological , Pulmonary Ventilation/physiology , Animals , Female , Humans , Lung/anatomy & histology , Male , Mice
2.
Inhal Toxicol ; 28(4): 180-91, 2016.
Article in English | MEDLINE | ID: mdl-26986953

ABSTRACT

The mouse lung has become increasingly important as a surrogate of the human lung for inhalation risk assessment. The main structural difference between the two lungs is that the airway branching of the human lung is relatively symmetric, while that of the mouse lung is distinctly asymmetric or monopodial. The objectives of this study were to develop a stochastic, asymmetric particle deposition model for the Balb/c mouse and to compare predicted deposition patterns with those in the human lung. The asymmetric bronchial airway geometry of the Balb/c mouse was based on a statistical analysis of several lung casts, while, in the absence of pertinent data, the asymmetric acinar airway geometry was represented by an allometrically scaled-down version of the rat acinar region, assuming structural similarity. Deposition of inhaled particles in nasal, bronchial and acinar airways for mouse-specific breathing conditions was computed with the Monte Carlo deposition model IDEAL-mouse. While total deposition for submicron particles decreases with increasing diameter in a fashion similar to that in the human lung, the effect of inhalability and nasal pre-filtration significantly reduces total deposition in the mouse lung for particles with diameters greater than about 3 µm. The most notable difference between submicron particle deposition in the mouse and human airways is the shift of the deposition distribution from distal airway generations in the human lung to upper airway generations in the mouse lung. However, if plotted as a function of airway diameter, both deposition distributions are quite similar, indicating that airway diameter may be a more appropriate morphometric parameter for extrapolation purposes than airway generation.


Subject(s)
Models, Biological , Particulate Matter/pharmacokinetics , Respiratory System/metabolism , Animals , Humans , Mice, Inbred BALB C , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL