Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.397
Filter
1.
Front Cell Neurosci ; 18: 1458720, 2024.
Article in English | MEDLINE | ID: mdl-39355176

ABSTRACT

Background: A number of drugs are toxic to the cochlear sensory cells known as hair cells (HCs), resulting in hearing loss. Treatment with survival-promoting growth factors, antioxidants, and inhibitors of cell death pathways or proteinases have been shown to reduce HC damage in in vivo and/or in vitro animal models. Conversely, translation to humans has often been disappointing. This may be due to the complexity of intracellular damage processes. We hypothesized that combining treatments targeting different cellular processes would be more effective. Methods: Using an in vitro model of gentamicin ototoxicity for murine cochlear hair cells, we screened all 56 possible combinations of inhibitors targeting five different cell damage mechanisms, plus the activator of one cell survival pathway, each of which have been shown to be singly effective in preventing HC loss in experimental studies. A high dose of gentamicin (200 µM) was used over three days in culture. All compounds were added at a dosage below that required for significant protection in the assay, and only this single dose was then employed. This was done so that we could more easily detect interactive, as opposed to additive, effects. Results: Increasing protection of hair cells was observed as combinations of compounds were increased from two to four factors, although not all combinations were equally protective. The optimal combination of four compounds consisted of an anti-oxidant, an apoptosis inhibitor, an autophagy inhibitor and a protective growth factor. Increasing the number of factors to five or six resulted in decreased protection. Conclusion: The results support the hypothesis that targeting multiple cellular damage or survival pathways provides more an effective hair cell protection approach. The results help to identify critical interactions among the cellular processes that operate in gentamicin ototoxicity. They also suggest that inhibiting too many biological processes impairs functions critical to HC survival, resulting in decreased protection.

2.
Eur J Med Chem ; 280: 116907, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39368264

ABSTRACT

Ischemic stroke (IS) is characterized by intricate pathophysiological mechanisms, where single-target treatments have often proven insufficient. Thus, multi-target therapeutic approaches are essential for effective IS management. In this study, we employed a molecular hybridization strategy, merging the structures of the iNOS inhibitor 1400W and the multi-target neuroprotective agent NBP, to develop a series of novel iNOS inhibitors BN-1 ∼ BN-4 with neuroprotective properties. Among these, BN-4 exhibited the most potent cell protective activity in OGD/R-induced SH-SY5Y and BV-2 cells. BN-4 not only reduced ROS levels induced by OGD/R in SH-SY5Y cells but also mitigated necrosis and apoptosis. By binding to iNOS in a manner similar to 1400W, BN-4 significantly inhibited iNOS activity. Furthermore, BN-4 demonstrated high stability, excellent blood-brain barrier permeability, and more than 100-fold increase in aqueous solubility compared to NBP. Additionally, BN-4 notably decreased infarct size and showed neuroprotective effects in tMCAO rats. These findings indicate that BN-4 holds promise as a novel candidate for treatment IS, offering enhanced therapeutic efficacy due to its superior pharmacokinetic and pharmacodynamic properties.

3.
Bioorg Chem ; 153: 107843, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39332072

ABSTRACT

In this work, additional effort was applied to design new BIBR1532-based analogues with potential inhibitory activity against telomerase and acting as multitarget antitumor candidates to overcome the resistance problem. Therefore, novel substituted N-phenyl-2-((6-phenylpyridazin-3-yl)thio)acetamide candidates (4a-n) were synthesized. Applying the lead optimization strategy of the previously designed compound 8e; compound 4l showed an improved telomerase inhibition of 64.95 % and a superior growth inhibition of 79 % suggesting its potential use as a successful "multitarget-directed drug" for cancer therapy. Accordingly, compound 4l was further selected to evaluate its additional JAK1/STAT3/TLR4 inhibitory potentials. Compound 4l represented a very promising JAK1 inhibitory potential with a 0.46-fold change, compared to that of pacritinib reference standard (0.33-fold change). Besides, it showed a superior STAT3-inhibitory potential with a 0.22-fold change compared to sorafenib (0.33-fold change). Additionally, compound 4l downregulated TLR4 protein expression by 0.81-fold change compared to that of resatorvid (0.29-fold change). Also, molecular docking was performed to investigate the binding mode and affinity of the superior candidate 4l towards the four target receptors (telomerase, JAK1, STAT3, and TLR4). Furthermore, the therapeutic potential of compound 4l as an antitumor agent was additionally explored through in vivo studies involving female mice implanted with Solid Ehrlich Carcinoma (SEC). Remarkably, compound 4l led to prominent reductions in tumor size and mass. Concurrent enhancements in biochemical, hematologic, histopathologic, and immunohistochemical parameters further confirmed the suppression of angiogenesis and inflammation, elucidating additional mechanisms by which compound 4l exerts its anticancer effects.

4.
Curr Med Sci ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347923

ABSTRACT

Alzheimer's disease (AD) is one of the most common forms of neurodegenerative dementia. The etiology of AD is multifactorial, and its complex pathophysiology involves tau and amyloid-ß deposition, increased oxidative stress, neuroinflammation, metabolic disorders, and massive neuronal loss. Due to its complex pathology, no effective cure for AD has been found to date. Therefore, there is an unmet clinical need for the development of new drugs against AD. Natural products are known to be good sources of compounds with pharmacological activity and have potential for the development of new therapeutic agents. Naringin, a naturally occurring flavanone glycoside, is predominantly found in citrus fruits and Chinese medicinal herbs. Mounting evidence shows that naringin and its aglycone, naringenin, have direct neuroprotective effects on AD, such as anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, and anti-neuroinflammatory effects, as well as metal chelation. Furthermore, they are known to improve disordered glucose/lipid metabolism, which is a high risk factor for AD. In this review, we summarize the latest data on the impact of naringin and naringenin on the molecular mechanisms involved in AD pathophysiology. Additionally, we provide an overview of the current clinical applications of naringin and naringenin. The novel delivery systems for naringin and naringenin, which can address their widespread pharmacokinetic limitations, are also discussed. The literature indicates that naringin and naringenin could be multilevel, multitargeted, and multifaceted for preventing and treating AD.

5.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39338400

ABSTRACT

Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous neurotransmitter in the human body. In the central nervous system, 5-HT affects sleep, pain, mood, appetite, and attention, while in the peripheral nervous system, 5-HT modulates peristalsis, mucus production, and blood vessel dilation. Fourteen membrane receptors mediate 5-HT activity. In agreement with the crucial roles played by 5-HT, many drugs target 5-HT receptors (5-HTRs). Therefore, it is unsurprising that many efforts have been devoted to discovering multitarget-directed ligands (MTDLs) capable of engaging one or more 5-HTRs plus another target phenotypically linked to a particular disease. In this review, we will describe medicinal chemistry efforts in designing MTDLs encompassing activity for one or more 5-HTRs, starting with atypical antipsychotics and moving to dual 5-HT1AR/serotonin transporter ligands, 5-HT6R antagonists/acetyl cholinesterases inhibitors, and 5-HT4R agonists/acetyl cholinesterases inhibitors. We will also provide an outlook on the most recent efforts made in the field.

6.
Int J Mol Sci ; 25(18)2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39337345

ABSTRACT

In our current study, we developed a focused series of original ((benzyloxy)benzyl)propanamide derivatives that demonstrated potent activity across in vivo mouse seizure models, specifically, maximal electroshock (MES) and 6 Hz (32 mA) seizures. Among these derivatives, compound 5 emerged as a lead molecule, exhibiting robust protection following intraperitoneal (i.p.) injection, as follows: ED50 = 48.0 mg/kg in the MES test, ED50 = 45.2 mg/kg in the 6 Hz (32 mA) test, and ED50 = 201.3 mg/kg in the 6 Hz (44 mA) model. Additionally, compound 5 displayed low potential for inducing motor impairment in the rotarod test (TD50 > 300 mg/kg), indicating a potentially favorable therapeutic window. In vitro toxicity assays further supported its promising safety profile. We also attempted to identify a plausible mechanism of action of compound 5 by applying both binding and functional in vitro studies. Overall, the data obtained for this lead molecule justifies the more comprehensive preclinical development of compound 5 as a candidate for a potentially broad-spectrum and safe anticonvulsant.


Subject(s)
Anticonvulsants , Disease Models, Animal , Electroshock , Seizures , Animals , Anticonvulsants/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Mice , Seizures/drug therapy , Male , Electroshock/adverse effects , Humans , Structure-Activity Relationship
7.
Int J Mol Sci ; 25(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39337494

ABSTRACT

This study proposes a novel therapeutic strategy for cancer management by combining the antitumor effects of hydrogen sulfide (H2S) and inhibition of carbonic anhydrases (CAs; EC 4.2.1.1), specifically isoforms IV, IX, and XII. H2S has demonstrated cytotoxicity against various cancers at high concentrations. The inhibition of tumor-associated CAs leads to lethal intracellular alkalinization and acidification of the extracellular tumor microenvironment and restores tumor responsiveness to the immune system, chemotherapy, and radiotherapy. The study proposes H2S donor-CA inhibitor (CAI) hybrids for tumor management. These compounds effectively inhibit the target CAs, release H2S consistently, and exhibit potent antitumor effects against MDA-MB-231, HCT-116, and A549 cancer cell lines. Notably, some compounds display high cytotoxicity across all investigated cell lines. Derivative 30 shows a 2-fold increase in cytotoxicity (0.93 ± 0.02 µM) under chemically induced hypoxia in HCT-116 cells. These compounds also disturb the cell cycle, leading to a reduction in cell populations in G0/G1 and S phases, with a notable increase in G2/M and Sub-G1. This disruption is correlated with induced apoptosis, with fold increases of 37.2, 24.5, and 32.9 against HCT-116 cells and 14.2, 13.1, and 19.9 against A549 cells compared to untreated cells. These findings suggest the potential of H2S releaser-CAI hybrids as effective and versatile tools in cancer treatment.


Subject(s)
Apoptosis , Carbonic Anhydrase Inhibitors , Cell Proliferation , Hydrogen Sulfide , Humans , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Cell Proliferation/drug effects , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Carbonic Anhydrases/metabolism , Cell Cycle/drug effects , HCT116 Cells , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , A549 Cells
8.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39338380

ABSTRACT

Non-polio enteroviruses (NPEVs), namely coxsackieviruses (CV), echoviruses (E), enteroviruses (EV), and rhinoviruses (RV), are responsible for a wide variety of illnesses. Some infections can progress to life-threatening conditions in children or immunocompromised patients. To date, no treatments have been approved. Several molecules have been evaluated through clinical trials without success. To overcome these failures, the multi-target directed ligand (MTDL) strategy could be applied to tackle enterovirus infections. This work analyzes registered clinical trials involving antiviral drugs to highlight the best candidates and develops filters to apply to a selection for MTDL synthesis. We explicitly stated the methods used to answer the question: which solution can fight NPEVs effectively? We note the originality and relevance of this proposal in relation to the state of the art in the enterovirus-inhibitors field. Several combinations are possible to broaden the antiviral spectrum and potency. We discuss data related to the virus and data related to each LEAD compound identified so far. Overall, this study proposes a perspective on different strategies to overcome issues identified in clinical trials and evaluate the "MTDL" potential to improve the efficacy of drugs, broaden the antiviral targets, possibly reduce the adverse effects, drug design costs and limit the selection of drug-resistant virus variants.

9.
Molecules ; 29(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339297

ABSTRACT

The discovery of a lead compound against Candida albicans is urgently needed because of the lack of clinically available antifungal drugs and the increase in drug resistance. Herein, a ß-carboline alkaloid methylaervine (MET) exhibited potential activity against C. albicans (MIC = 16-128 µg/mL), no hemolytic toxicity, and a low tendency to induce drug resistance. An antifungal mechanism study indicated that MET effectively inhibited the biofilm formation and disrupted the mature biofilm. Moreover, filamentation formation and spore germination were also weakened. The electron microscopy analysis revealed that MET could damage the cell structure, including the cell wall, membrane, and cytoplasm. In particular, the permeability and integrity of the cell membrane were destroyed. When it entered the fungi cell, it interfered with the redox homeostasis and DNA function. Overall, MET can inhibit the growth of C. albicans from multiple channels, such as biofilm, filamentation, cell structure, and intracellular targets, which are difficult to mutate at the same time to generate drug resistance. This work provides a promising lead compound for the creation of new antifungal agents against C. albicans.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Microbial Sensitivity Tests , Candida albicans/drug effects , Candida albicans/growth & development , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Biofilms/drug effects , Carbolines/pharmacology , Carbolines/chemistry , Cell Membrane/drug effects
10.
Curr Top Med Chem ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39301898

ABSTRACT

A stroke, also known as a cerebral hemorrhage, occurs when there is an interruption in the blood supply to a part of the brain, resulting in damage to brain cells. This issue is one of the leading causes of death in developed countries, currently killing about 5 million people annually. Individuals who survive ischemic stroke often face serious vision problems, paralysis, dementia, and other sequelae. The numerous efforts to prevent and/or treat stroke sequelae seem insufficient, which is concerning given the increasing global elderly population and the well-known association between aging and stroke risk. In this review, we aim to present and discuss the importance of vitamins in stroke prevention and/or incidence. Vitamins from diet or dietary supplements influence the body at various levels; they are a relevant factor but are reported only in isolated articles. This review reports and updates the multitarget role of vitamins involved in reducing stroke risk.

11.
Phytomedicine ; 135: 156018, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39303507

ABSTRACT

BACKGROUND: Influenza virus-induced pneumonia (IVP) is an infectious pulmonary disease characterized by exacerbated pulmonary inflammation caused by invasion of the influenza virus. IVP continues to threaten public health due to its high morbidity and mortality rates. Geniposide is one of the major bioactive constituents of G. jasminoides, which exerts antiviral and anti-inflammatory effects on influenza A virus (IAV) infection. PURPOSE: To investigate therapeutic effects and comprehensive mechanisms of geniposide on IAV infection and subsequent pneumonia. METHODS: ICR mice were infected intranasally with H1N1 (A/FM/1/47) to detect the anti-IAV activity of geniposide. Proteomics combined with function-integrated analysis were conducted to gain insight into the comprehensive mechanisms of geniposide. Subsequently, western blot was used to detect the phosphorylation of signal transducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription 2 (STAT2), Interferon regulatory factor 9 (IRF9) and Janus kinase 1 (JAK1) in Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in lung tissue. Finally, RT-qPCR was used to detect the levels of interleukin 6 (IL-6), interleukin 17 (IL-17), interferon-γ (IFN-γ) and the STAT1 inhibitor (fludarabine) was used to verify the targeting between STAT1 and geniposide in RAW cells. RESULTS: Geniposide could significantly reduce the lung index, diminish lung pathology, decrease the virus loads and the inflammatory cytokines expression induced by IAV infection. A total of 411 differentially expressed proteins were identified among control, model, and geniposide-treated group in proteomic analysis. According to function-integrated analysis, 15 KEGG pathways were enriched and divided into 9 groups (modules), including influenza A, NOD-like receptor signaling, RIG-I-like receptor signaling, and so on. Among these modules, the most intensely interacting module pair was the NOD-like receptor signaling and influenza A, in which STAT1 and STAT2 acted as hubs with critical bridgeness role in the target network of geniposide. This indicated that geniposide may mitigate inflammation and alleviate IVP by JAK/STAT signaling pathways. Moreover, validation experiments confirmed that geniposide can significantly inhibit STAT1 and STAT2 phosphorylation as well as down-regulated expression of IL-6, IFN-γ and IL-17 in lung. Furthermore, when RAW cells were treated with the STAT1 inhibitor (fludarabine), the inhibitory effect of geniposide on IFN-γ and IL-6 was attenuated significantly. CONCLUSIONS: Geniposide can attenuate IAV-induced pneumonia by regulating inflammatory cytokines production through the JAK/STAT pathway.

12.
J Biol Chem ; : 107803, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307306

ABSTRACT

Desmethylphosphinothricin (L-Glu-γ-PH) is the H-phosphinic analogue of glutamate with carbon-phosphorus-hydrogen (C-P-H) bonds. In L-Glu-γ-PH the phosphinic group acts as a bioisostere of glutamate γ-carboxyl group allowing the molecule to be a substrate of Escherichia coli glutamate decarboxylase, a pyridoxal 5'-phosphate-dependent α-decarboxylase. In addition, the L-Glu-γ-PH decarboxylation product, GABA-PH, is further metabolized by bacterial GABA-transaminase, another pyridoxal 5'-phosphate-dependent enzyme, and succinic semialdehyde dehydrogenase, a NADP+-dependent enzyme. The product of these consecutive reactions, the so-called GABA shunt, is succinate-PH, the H-phosphinic analogue of succinate, a tricarboxylic acid cycle intermediate. Notably, L-Glu-γ-PH displays an antibacterial activity in the same concentration range of well-established antibiotics in E. coli. The dipeptide L-Leu-Glu-γ-PH was shown to display an even higher efficacy, likely as a consequence of an improved penetration into the bacteria. Herein, with the aim of further understanding the intracellular effects of L-Glu-γ-PH, 1H NMR-based metabolomics and LC-MS-based shotgun proteomics were used. This study included also the keto-derivative of L-Glu-γ-PH, α-ketoglutarate-γ-PH (α-KG-γ-PH), which also exhibits antimicrobial activity. L-Glu-γ-PH and α-KG-γ-PH are found to similarly impact the bacterial metabolism, though the overall effect of α-KG-γ-PH is more pervasive. Notably α-KG-γ-PH is converted intracellularly into L-Glu-γ-PH, but the opposite was not found. In general, both molecules impact the pathways where aspartate, glutamate and glutamine are used as precursors for the biosynthesis of related metabolites, activate the acid stress response and deprive cells of nitrogen. This work highlights the multi-target drug potential of L-Glu-γ-PH and α-KG-γ-PH and paves the way for their exploitation as antimicrobials.

13.
Phytomedicine ; 135: 156022, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39284270

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive and highly lethal cancer with an increasing incidence worldwide that lacks effective treatment regimens. Hypocrellin A (HA), a natural small compound isolated from S. bambusicola, has multiple biomedical activities, including antitumor activity. PURPOSE: We intended to investigate the therapeutic effects of HA on ICC and its potential mechanisms. METHODS: RBE and HuccT1 cell lines were utilized for in vitro experiments. CCK8 assay, colony formation analysis, RTCA, and immunofluorescence staining of ki67 were employed to evaluate the suppression effects of HA on proliferation. The inhibitory effects of HA on cell migration and invasion were evaluate through transwell and wound healing assays, and Hoechst 33,258 staining was performed to evaluate apoptosis. Additionally, we performed transcriptome sequencing and molecular docking for targeting identification, and immunoblotting and immunofluorescence of key molecules for validation. Two in vivo models, HuccT1 xenografts, and the primary ICC model (KRAS/P19/SB) established via hydrodynamic tail-vein injection were implemented. Multiplex immunohistochemistry (mIHC) was used to illustrate the multi-target inhibitory effects of HA. RESULTS: The IC50 values of HA against RBE and HuccT1 cells were 4.612 µM and 10.01 µM for 24 h, as determined through the CCK8 assay. Our results confirmed that HA significantly repressed the proliferation, migration, invasion, and promoted the apoptosis of ICC cells at low concentrations. Moreover, HA exerted its anti-cancer effects through multi-target inhibition of the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. This inhibitory effect was rescued by Recilisib, an activator of the PI3K-AKT-mTOR pathway. Bioinformatics analysis of a multi-center RNA-Seq cohort (n = 90) demonstrated significant associations between these target pathways and the occurrence and poor prognosis of ICC. Animal studies suggested that HA strongly inhibited tumor growth in xenograft ICC models, and repressed the tumor number and size in the liver of primary ICC models by suppressing these three crucial pathways. CONCLUSION: HA, a novel natural small molecule, demonstrated promising therapeutic efficacy against ICC through its multi-target inhibitory effects on the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. Moreover, it exhibited notable therapeutic benefits in a primary ICC model (KRAS/P19/SB), positioning it as a novel therapeutic agent for ICC.

14.
Pharmacol Res ; 209: 107408, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307212

ABSTRACT

Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.

15.
Biomed Pharmacother ; 179: 117389, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39243426

ABSTRACT

An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the µ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.


Subject(s)
Analgesics, Opioid , Chronic Pain , Disease Models, Animal , Inflammation , Injections, Spinal , Receptors, Opioid, mu , Animals , Chronic Pain/drug therapy , Receptors, Opioid, mu/metabolism , Mice , Male , Inflammation/drug therapy , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Analgesics, Opioid/pharmacology , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Opioid, delta/metabolism , Mice, Inbred C57BL , Analgesics/pharmacology , Analgesics/administration & dosage , Morphine/administration & dosage , Morphine/pharmacology , Spinal Cord/drug effects , Spinal Cord/metabolism , Hyperalgesia/drug therapy , Humans , Oligopeptides/administration & dosage , Oligopeptides/pharmacology
16.
Antioxidants (Basel) ; 13(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39199144

ABSTRACT

Cancer and oxidative stress are interrelated, with reactive oxygen species (ROS) playing crucial roles in physiological processes and oncogenesis. Excessive ROS levels can induce DNA damage, leading to cancer, and disrupt antioxidant defenses, contributing to diseases like diabetes and cardiovascular disorders. Antioxidant mechanisms include enzymes and small molecules that mitigate ROS damage. However, cancer cells often exploit oxidative conditions to evade apoptosis and promote tumor growth. Antioxidant therapy has shown mixed results, with timing and cancer-type influencing outcomes. Multifunctional drugs targeting multiple pathways offer a promising approach, reducing side effects and improving efficacy. Recent research focuses on sulfur-nitrogen heterocyclic derivatives for their dual antioxidant and anticancer properties, potentially enhancing therapeutic efficacy in oncology. The newly synthesized compounds often do not demonstrate both antioxidant and anticancer properties simultaneously. Heterocyclic rings are typically combined with phenyl groups, where hydroxy substitutions enhance antioxidant activity. On the other hand, electron-withdrawing substituents, particularly at the p-position on the phenyl ring, tend to enhance anticancer activity.

17.
Front Psychiatry ; 15: 1428730, 2024.
Article in English | MEDLINE | ID: mdl-39188520

ABSTRACT

Introduction: Chronic cocaine exposure induces an increase in dopamine release and an increase in the expression of the Fos protein in the rat striatum. It has been suggested that both are necessary for the expression of cocaine-induced alterations in behavior and neural circuitry. Mirtazapine dosing attenuated the cocaine-induced psychomotor and reinforcer effects. Methods: The study evaluates the effect of chronic dosing of mirtazapine on cocaine-induced extracellular dopamine levels and Fos protein expression in rats. Male Wistar rats received cocaine (10 mg/Kg; i.p.) during the induction and expression of locomotor sensitization. The mirtazapine (30 mg/Kg; MIR), was administered 30 minutes before cocaine during the cocaine withdrawal. After each treatment, the locomotor activity was recorded for 30 minutes. Animals were sacrificed after treatment administration. Dopamine levels were determined by high-performance liquid chromatographic (HPLC) in the ventral striatum, the prefrontal cortex (PFC), and the ventral tegmental area (VTA) in animals treated with mirtazapine and cocaine. The quantification of c-fos immunoreactive cells was carried out by stereology analysis. Results: Mirtazapine generated a decrease in cocaine-induced locomotor activity. In addition, mirtazapine decreased the amount of cocaine-induced dopamine and the number of cells immunoreactive to the Fos protein in the striatum, PFC, and VTA. Discussion: These data suggest that mirtazapine could prevent the consolidation of changes in behavior and the cocaine-induced reorganization of neuronal circuits. It would explain the mirtazapine-induced effects on cocaine behavioral sensitization. Thus, these data together could support its possible use for the treatment of patients with cocaine use disorder.

18.
Pharmaceutics ; 16(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39204327

ABSTRACT

Multitarget compounds have emerged as promising drug candidates to cope with complex multifactorial diseases, like Alzheimer's disease (AD). Most multitarget compounds are designed by linking two pharmacophores through a tether chain (linked hybrids), which results in rather large molecules that are particularly useful to hit targets with large binding cavities, but at the expense of suffering from suboptimal physicochemical/pharmacokinetic properties. Molecular size reduction by removal of superfluous structural elements while retaining the key pharmacophoric motifs may represent a compromise solution to achieve both multitargeting and favorable physicochemical/PK properties. Here, we report the stepwise structural simplification of the dihydroxyanthraquinone moiety of a rhein-huprine hybrid lead by hydroxy group removal-ring contraction-ring opening-ring removal, which has led to new analogs that retain or surpass the potency of the lead on its multiple AD targets while exhibiting more favorable drug metabolism and pharmacokinetic (DMPK) properties and safety profile. In particular, the most simplified acetophenone analog displays dual nanomolar inhibition of human acetylcholinesterase and butyrylcholinesterase (IC50 = 6 nM and 13 nM, respectively), moderately potent inhibition of human BACE-1 (48% inhibition at 15 µM) and Aß42 and tau aggregation (73% and 68% inhibition, respectively, at 10 µM), favorable in vitro brain permeation, higher aqueous solubility (18 µM) and plasma stability (100/96/86% remaining in human/mouse/rat plasma after 6 h incubation), and lower acute toxicity in a model organism (zebrafish embryos; LC50 >> 100 µM) than the initial lead, thereby confirming the successful lead optimization by structural simplification.

19.
Ren Fail ; 46(2): 2395451, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39212247

ABSTRACT

OBJECTIVE: This study aimed to compare the efficacy and safety of biologics, multitarget therapy, and standard therapy for the induction of lupus nephritis. METHODS: A systematic search of electronic databases (EMBASE, Web of Science, PubMed, Cochrane Library, and ClinicalTrials.gov) was conducted from inception to 30 August 2023. Our study included randomized controlled trials enrolling adult lupus nephritis patients treated with biologics or multitarget therapy, in comparison with standard therapy. The primary outcomes were the rates of complete renal remission (CRR) and serious adverse events (SAE). Stata 15.0 was used to conduct the network meta-analysis. RESULTS: Ten randomized controlled trials with a total of 1989 patients met the inclusion criteria. The network meta-analysis indicated that compared with standard therapy, multitarget therapy, obinutuzumab, belimumab, and voclosporin therapy demonstrated superior efficacy in achieving complete renal remission. Among these options, multitarget therapy had the greatest effect (OR = 2.78, 95% CI = 1.81-4.26). Regarding safety, it was observed that there were no significant statistical differences among the various treatment options. Cluster analysis revealed that both obinutuzumab and belimumab exhibited good efficacy and safety. CONCLUSIONS: belimumab and obinutuzumab stood out as promising treatments due to their good performance in terms of efficacy and safety. Multitarget therapy may be the most effective approach for treating lupus nephritis. However, since the study population consists exclusively of Asian patients, further research is needed to verify the efficacy of multitarget therapy in lupus nephritis patients of non-Asian descent.


Subject(s)
Antibodies, Monoclonal, Humanized , Biological Products , Lupus Nephritis , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Biological Products/therapeutic use , Cyclosporine , Immunosuppressive Agents/therapeutic use , Lupus Nephritis/drug therapy , Molecular Targeted Therapy , Network Meta-Analysis , Randomized Controlled Trials as Topic , Remission Induction , Treatment Outcome
20.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201386

ABSTRACT

Glioblastoma (GBM) is a primary CNS tumor that is highly lethal in adults and has limited treatment options. Despite advancements in understanding the GBM biology, the standard treatment for GBM has remained unchanged for more than a decade. Only 6.8% of patients survive beyond five years. Telomerase, particularly the hTERT promoter mutations present in up to 80% of GBM cases, represents a promising therapeutic target due to its role in sustaining telomere length and cancer cell proliferation. This review examines the biology of telomerase in GBM and explores potential telomerase-targeted therapies. We conducted a systematic review following the PRISMA-P guidelines in the MEDLINE/PubMed and Scopus databases, from January 1995 to April 2024. We searched for suitable articles by utilizing the terms "GBM", "high-grade gliomas", "hTERT" and "telomerase". We incorporated studies addressing telomerase-targeted therapies into GBM studies, excluding non-English articles, reviews, and meta-analyses. We evaluated a total of 777 records and 46 full texts, including 36 studies in the final review. Several compounds aimed at inhibiting hTERT transcription demonstrated promising preclinical outcomes; however, they were unsuccessful in clinical trials owing to intricate regulatory pathways and inadequate pharmacokinetics. Direct hTERT inhibitors encountered numerous obstacles, including a prolonged latency for telomere shortening and the activation of the alternative lengthening of telomeres (ALT). The G-quadruplex DNA stabilizers appeared to be potential indirect inhibitors, but further clinical studies are required. Imetelstat, the only telomerase inhibitor that has undergone clinical trials, has demonstrated efficacy in various cancers, but its efficacy in GBM has been limited. Telomerase-targeted therapies in GBM is challenging due to complex hTERT regulation and inadequate inhibitor pharmacokinetics. Our study demonstrates that, despite promising preclinical results, no Telomerase inhibitors have been approved for GBM, and clinical trials have been largely unsuccessful. Future strategies may include Telomerase-based vaccines and multi-target inhibitors, which may provide more effective treatments when combined with a better understanding of telomere dynamics and tumor biology. These treatments have the potential to be integrated with existing ones and to improve the outcomes for patients with GBM.


Subject(s)
Glioblastoma , Telomerase , Telomerase/antagonists & inhibitors , Telomerase/metabolism , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Molecular Targeted Therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Telomere/metabolism , Telomere/drug effects , Animals
SELECTION OF CITATIONS
SEARCH DETAIL