Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biomol NMR Assign ; 15(1): 153-157, 2021 04.
Article in English | MEDLINE | ID: mdl-33389548

ABSTRACT

Coronaviruses have become of great medical and scientific interest because of the Covid-19 pandemic. The hCoV-HKU1 is an endemic betacoronavirus that causes mild respiratory symptoms, although the infection can progress to severe lung disease and death. During viral replication, a discontinuous transcription of the genome takes place, producing the subgenomic messenger RNAs. The nucleocapsid protein (N) plays a pivotal role in the regulation of this process, acting as an RNA chaperone and participating in the nucleocapsid assembly. The isolated N-terminal domain of protein N (N-NTD) specifically binds to the transcriptional regulatory sequences and control the melting of the double-stranded RNA. Here, we report the resonance assignments of the N-NTD of HKU1-CoV.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Magnetic Resonance Spectroscopy , Carbon Isotopes , Escherichia coli/metabolism , Hydrogen , Nitrogen Isotopes , Protein Binding , Protein Domains , Protein Structure, Secondary , Software
2.
Front Mol Neurosci ; 12: 325, 2019.
Article in English | MEDLINE | ID: mdl-32063836

ABSTRACT

The bifunctional enzyme soluble epoxide hydrolase (sEH) is found in all regions of the brain. It has two different catalytic activities, each assigned to one of its terminal domains: the C-terminal domain presents hydrolase activity, whereas the N-terminal domain exhibits phosphatase activity. The enzyme's C-terminal domain has been linked to cardiovascular protective and anti-inflammatory effects. Cholesterol-related disorders have been associated with sEH, which plays an important role in the metabolism of cholesterol precursors. The role of sEH's phosphatase activity has been so far poorly investigated in the context of the central nervous system physiology. Given that brain cholesterol disturbances play a role in the onset of Alzheimer's disease (AD) as well as of other neurodegenerative diseases, understanding the functions of this enzyme could provide pivotal information on the pathophysiology of these conditions. Moreover, the sEH phosphatase domain could represent an underexplored target for drug design and therapeutic strategies to improve symptoms related to neurodegenerative diseases. This review discusses the function of sEH in mammals and its protein structure and catalytic activities. Particular attention was given to the distribution and expression of sEH in the human brain, deepening into the enzyme's phosphatase activity and its participation in brain cholesterol synthesis. Finally, this review focused on the metabolism of cholesterol and its association with AD.

3.
J Biol Chem ; 293(32): 12454-12471, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29880642

ABSTRACT

In mammals, the main molecular entity involved in innocuous cold transduction is TRPM8. This polymodal ion channel is activated by cold, cooling compounds such as menthol and voltage. Despite its relevance, the molecular determinants involved in its activation by cold remain elusive. In this study we explored the use of TRPM8 orthologs with different cold responses as a strategy to identify new molecular determinants related with their thermosensitivity. We focused on mouse TRPM8 (mTRPM8) and chicken TRPM8 (cTRPM8), which present complementary thermosensitive and chemosensitive phenotypes. Although mTRPM8 displays larger responses to cold than cTRPM8 does, the avian ortholog shows a higher sensitivity to menthol compared with the mouse channel, in both HEK293 cells and primary somatosensory neurons. We took advantage of these differences to build multiple functional chimeras between these orthologs, to identify the regions that account for these discrepancies. Using a combination of calcium imaging and patch clamping, we identified a region encompassing positions 526-556 in the N terminus, whose replacement by the cTRPM8 homolog sequence potentiated its response to agonists. More importantly, we found that the characteristic cold response of these orthologs is due to nonconserved residues located within the pore loop, suggesting that TRPM8 has evolved by increasing the magnitude of its cold response through changes in this region. Our results reveal that these structural domains are critically involved in cold sensitivity and functional modulation of TRPM8, and support the idea that the pore domain is a key molecular determinant in temperature responses of this thermo-transient receptor potential (TRP) channel.


Subject(s)
Avian Proteins/metabolism , Calcium/metabolism , Cold Temperature , Ion Channel Gating/physiology , TRPM Cation Channels/metabolism , Amino Acid Sequence , Animals , Avian Proteins/genetics , Chickens , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Menthol/pharmacology , Mice , Mutagenesis, Site-Directed , Mutation , Protein Domains , Sequence Homology , TRPM Cation Channels/genetics
4.
Biochim Biophys Acta ; 1840(3): 935-44, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24239686

ABSTRACT

BACKGROUND: Ureases are metalloenzymes involved in defense mechanisms in plants. The insecticidal activity of Canavalia ensiformis (jack bean) ureases relies partially on an internal 10kDa peptide generated by enzymatic hydrolysis of the protein within susceptible insects. A recombinant version of this peptide, jaburetox, exhibits insecticidal, antifungal and membrane-disruptive properties. Molecular modeling of jaburetox revealed a prominent ß-hairpin motif consistent with either neurotoxicity or pore formation. METHODS: Aiming to identify structural motifs involved in its effects, mutated versions of jaburetox were built: 1) a peptide lacking the ß-hairpin motif (residues 61-74), JbtxΔ-ß; 2) a peptide corresponding the N-terminal half (residues 1-44), Jbtx N-ter, and 3) a peptide corresponding the C-terminal half (residues 45-93), Jbtx C-ter. RESULTS: 1) JbtxΔ-ß disrupts liposomes, and exhibited entomotoxic effects similar to the whole peptide, suggesting that the ß-hairpin motif is not a determinant of these biological activities; 2) both Jbtx C-ter and Jbtx N-ter disrupted liposomes, the C-terminal peptide being the most active; and 3) while Jbtx N-ter persisted to be biologically active, Jbtx C-ter was less active when tested on different insect preparations. Molecular modeling and dynamics were applied to the urease-derived peptides to complement the structure-function analysis. MAJOR CONCLUSIONS: The N-terminal portion of the Jbtx carries the most important entomotoxic domain which is fully active in the absence of the ß-hairpin motif. Although the ß-hairpin contributes to some extent, probably by interaction with insect membranes, it is not essential for the entomotoxic properties of Jbtx. GENERAL SIGNIFICANCE: Jbtx represents a new type of insecticidal and membrane-active peptide.


Subject(s)
Canavalia/enzymology , Insecticides/pharmacology , Urease/pharmacology , Amino Acid Sequence , Animals , Cockroaches , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Neuromuscular Junction/drug effects , Plant Proteins , Protein Isoforms , Recombinant Proteins/pharmacology , Structure-Activity Relationship , Urease/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL