Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Sci Total Environ ; 953: 176225, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39270873

ABSTRACT

Understanding the stability of NPs in different aqueous environments, related with their size is crucial for assessing their potential risks. This is influenced by several factors, including pH, ionic strength, and the presence of biomolecules, or dissolved organic matter (DOM). In this study, dispersions of NPs derived from common plastic waste materials, including polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), and polycarbonate (PC), were synthesized by a nanoprecipitation method with sizes: 189 ± 7, 58 ± 3, 123 ± 4, 151 ± 7 and 182 ± 6 nm, respectively. Stability for a period of 14 days of these NPs was assessed in various natural water matrices. Different analytical techniques were used, including Asymmetric Flow Field-Flow Fractionation (AF4) coupled with UV-Vis and Dynamic Light Scattering (DLS) in series, batch DLS, Fourier-Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), and Transmission Electron Microscopy (TEM). None of the studied NPs was stable in seawater and NPs were transformed in microplastics (MPs) by aggregation. PET was more prone to aggregation in all waters and PS was the most stable followed for PC, PVC and PMMA. However, bottle and tap waters maintained better the original size of NPs. For the most stable dispersion PS, the influence of heteroaggregation in tap and lagoon waters and aging from exposure to UV light in sea water were tested. In both cases, the stability over time was worse for PS. The results can contribute to a more comprehensive understanding of the fate and behaviour of NPs in natural aquatic environments, emphasizing the importance of studying a wide range of polymers.

2.
Talanta ; 281: 126877, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39277933

ABSTRACT

The ubiquity of plastic products has led to an increased exposure to micro and nano plastics across diverse environments, presenting a novel class of pollutants with substantial health implications. Emerging research indicates their capacity to infiltrate human organs, posing risks of tissue damage and carcinogenesis. Given the prevalent consumption of beverages as a primary vector for these plastics' entry into the human system, there is an imperative need for the advancement of precise detection methodologies in liquids. In this study, we introduce a substrate comprising a Nickel Oxide (NiO) nanosheet array decorated with Silver Nanoparticles (AgNPs) for the Surface-Enhanced Raman Spectroscopy (SERS) analysis of micro//nano plastics. This configuration, leveraging a unique nanowell architecture alongside silver plasmonic enhancement, demonstrates unparalleled sensitivity and repeatability in signal, facilitating the accurate quantification of these contaminants. Through the application of a portable Raman apparatus, this study successfully identifies prevalent micro/nano plastics including polystyrene (PS), polyethylene (PE), and polypropylene (PP), achieving detection sensitivities of 5 µg/mL, 25 µg/mL, and 25 µg/mL, respectively. Moreover, the substrate's efficacy extends to the detection of PS within commonly consumed beverages such as water, milk, and liquor with sensitivities of 25 µg/mL, 50 µg/mL, and 50 µg/mL, respectively. These findings highlight the substrate's potential as an expedient and effective sensor for the real-time monitoring of micro/nano plastic pollutants.

3.
Sci Total Environ ; 954: 176530, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332714

ABSTRACT

With the widespread use of plastic products, microplastics and nanoplastics have emerged as prevalent pollutants in coastal aquatic ecosystems. Parasesarma pictum, a common estuarine crab species, was selected as a model organism. P. pictum was exposed to polystyrene (PS) particles of sizes 80 nm (80PS), 500 nm (500PS), and 1000 nm (1000PS), as well as to clean seawater (CK) for 21 days. Histological and fluorescent staining results showed that PS particles of all three sizes induced hepatopancreatic nuclear pyknosis, cell junction damage, and necrosis. The degree of damage was observed as 1000PS > 80PS > 500PS. Transcriptomic analysis revealed that major differentially expressed genes (DEGs) were associated with cellular processes, membrane components, and catalytic activity. The respiratory chain disruptions and immune exhaustion induced by 1000PS were notably stronger than those by 80PS and 500PS. Additionally, necrosis caused hepatopancreas injury in P. pictum rather than apoptosis or autophagy after long-term PS particle exposure. Furthermore, PS particles of all three sizes inhibited innate immunity, while the complement pathway was not significantly affected in the 80PS group. This study elucidated potential distinctions in how plastic particles of varying sizes (nanoplastics, microplastics, and micro/nanoplastics) impact P. pictum, providing a reference for toxicological mechanism research on microplastics and nanoplastics in aquatic organisms. Future research should focus on exploring long-term effects and potential mitigation strategies for microplastics and nanoplastics of more types and a wider range of particle size pollution in aquatic environments.

4.
Sci Total Environ ; 953: 176017, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39236815

ABSTRACT

The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5ß1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5ß1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5ß1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.


Subject(s)
Endocytosis , Lung Diseases , Polystyrenes , Humans , Polystyrenes/toxicity , Lung Diseases/chemically induced , Integrin alpha5beta1/metabolism , Microplastics/toxicity , Reactive Oxygen Species/metabolism , Nanoparticles/toxicity
5.
Mar Environ Res ; 202: 106742, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39265326

ABSTRACT

The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in Grateloupia turuturu and Chondrus ocellatus. Difference of surface characteristics between G. turuturu and C. ocellatus may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of C. ocellatus was higher than that of G. turuturu. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of C. ocellatus. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. G. turuturu was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.

6.
J Hazard Mater ; 478: 135512, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39151361

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) present in wastewater can pose a negative impact to aerobic granular sludge (AGS). Herein, this study found that MPs and NPs (20 mg/L) deteriorated the sludge settleability and granule integrity, resulting in a 15.7 % and 21.9 % decrease in the total nitrogen removal efficiency of the AGS system, respectively. This was possibly due to the reduction of the extracellular polymeric substances (EPS) content. The subsequent analysis revealed that tyrosine, tryptophan, and humic acid-like substances in EPS exhibited a higher propensity for chemisorption and inhomogeneous multilayer adsorption onto NPs compared to MPs. The binding of EPS onto the surface of plastic particles increased the electronegativity of the MPs, but facilitated the aggregation of NPs through reducing the electrostatic repulsion, thereby mitigating the adverse effects of MPs/NPs on the AGS stability. Additionally, comprehensive analysis of the extended Derjaguin-Landau-Verwey-Overbeek theory indicated that the suppressed aggregation of microorganisms was the internal mechanisms contributing to the inadequate stability of AGS induced by MPs/NPs. This study provides novel insights into the detrimental mechanisms of MPs/NPs on the AGS stability, highlighting the key role of EPS in maintaining the structural stability of AGS when exposed to MPs/NPs.


Subject(s)
Extracellular Polymeric Substance Matrix , Microplastics , Sewage , Sewage/microbiology , Sewage/chemistry , Microplastics/toxicity , Microplastics/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Aerobiosis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Adsorption , Nitrogen/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Waste Disposal, Fluid/methods , Plastics/chemistry
7.
Arch Toxicol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096369

ABSTRACT

Nano-plastics (NPs) have emerged as a significant environmental pollutant, widely existing in water environment, and pose a serious threat to health and safety with the intake of animals. Skeletal muscle, a vital organ for complex life activities and functional demands, has received limited attention regarding the effects of NPs. In this study, the effects of polystyrene NPs (PS-NPs) on skeletal muscle development were studied by oral administration of different sizes (1 mg/kg) of PS-NPs in mice. The findings revealed that PS-NPs resulted in skeletal muscle damage and significantly hindered muscle differentiation, exhibiting an inverse correlation with PS-NPs particle size. Morphological analysis demonstrated PS-NPs caused partial disruption of muscle fibers, increased spacing between fibers, and lipid accumulation. RT-qPCR and western blots analyses indicated that PS-NPs exposure downregulated the expression of myogenic differentiation-related factors (Myod, Myog and Myh2), activated PPARγ/LXRß pathway, and upregulated the expressions of lipid differentiation-related factors (SREBP1C, SCD-1, FAS, ACC1, CD36/FAT, ADIPOQ, C/EBPα and UCP-1). In vitro experiments, C2C12 cells were used to confirm cellular penetration of PS-NPs (0, 100, 200, 400 µg/mL) through cell membranes along with activation of PPARγ expression. Furthermore, to verify LXRß as a key signaling molecule, silencing RNA transfection experiments were conducted, resulting in no increase in the expressions of PPARγ, LXRß, SREBP1C, FAS, CD36/FAT, ADIPOQ, C/EBPα and UCP-1 even after exposure to PS-NPs. However, the expressions of SCD-1and ACC1 remained unaffected. The present study evidenced that exposure to PS-NPs induced lipid accumulation via the PPARγ/LXRß pathway thereby influencing skeletal muscle development.

8.
Heliyon ; 10(15): e35101, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170535

ABSTRACT

Micro-nano-plastic (MNP) particles (p) in the environment can enter the human body and pose a potential threat to human health. However, it is unknown whether these substances are present in polypropylene (PP) plastic-bottled injections, which are used as high-frequency intravenous infusions to treat diseases. Therefore, the objective of this study was to identify and quantify insoluble MNP particles in 16 batches of injectable formulations within the validity period. Primarily, ethylene-propylene copolymer or P(E-P) micro-plastic (MP) particles (2-10 µm, 216 p/mL) were identified by micro-Raman spectroscopy, and nano-particles (<50 nm, 2.1 × 104 p/mL) similar to PP containing only carbon were detected by scanning electron microscopy-energy-dispersive X-ray spectroscopy (photoelectron). Furthermore, P(E-P) MP particles (1 × 103 to 1 × 105 ng/L) from the injections were enriched on the GF-B filter, and PP or P(E-P) nano-plastic (NP) particles (1 × 103 to 4 × 104 ng/L) enriched on the alumina film were detected by pyrolysis-gas chromatography/mass spectrometry. Finally, the total insoluble particles in injections were 6 × 104 to 1 × 107 p/mL (0.02-100 µm). Our findings are the first to identify and quantify MNPs in PP-bottled injections. Considering that they can enter the blood circulation, so whether cause disease remains to be investigated.

9.
J Hazard Mater ; 478: 135550, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39173388

ABSTRACT

Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.


Subject(s)
Polystyrenes , Seedlings , Vitis , Vitis/metabolism , Vitis/genetics , Vitis/drug effects , Polystyrenes/chemistry , Seedlings/metabolism , Seedlings/drug effects , Metabolomics , Transcriptome , Microplastics/toxicity , Plant Roots/metabolism , Plant Roots/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Plant Growth Regulators/metabolism
10.
Ageing Res Rev ; 99: 102405, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971321

ABSTRACT

Diabetes mellitus, a metabolic condition affecting around 537 million individuals worldwide, poses significant challenges, particularly among the elderly population. The etiopathogenesis of type 2 diabetes (T2D) depends on a combination of the effects driven by advancing age, genetic background, and lifestyle habits, e.g. overnutrition. These factors influence the development of T2D differently in men and women, with an obvious sexual dimorphism possibly underlying the diverse clinical features of the disease in different sexes. More recently, environmental pollution, estimated to cause 9 million deaths every year, is emerging as a novel risk factor for the development of T2D. Indeed, exposure to atmospheric pollutants such as PM2.5, O3, NO2, and Persistent Organic Pollutants (POP)s, along with their combination and bioaccumulation, is associated with the development of T2D and obesity, with a 15 % excess risk in case of exposure to very high levels of PM2.5. Similar data are available for plasticizer molecules, e.g. bisphenol A and phthalates, emerging endocrine-disrupting chemicals. Even though causality is still debated at this stage, preclinical evidence sustains the ability of multiple pollutants to affect pancreatic function, promote insulin resistance, and alter lipid metabolism, possibly contributing to T2D onset and progression. In addition, preclinical findings suggest a possible role also for plastic itself in the development of T2D. Indeed, pioneeristic studies evidenced that micro- or nanoplastics (MNP)s, particles in the micro- or nano- range, promote cellular damage, senescence, inflammation, and metabolic disturbances, leading to insulin resistance and impaired glucose metabolism in animal and/or in vitro models. Here we synthesize recent knowledge relative to the association between air-related or plastic-derived pollutants and the incidence of T2D, discussing also the possible mechanistic links suggested by the available literature. We then anticipate the need for future studies in the field of candidate therapeutic strategies limiting pollution-induced damage in preclinical models, such as SGLT-2 inhibitors. We finally postulate that future guidelines for T2D prevention should consider pollution and sex an additional risk factors to limit the diabetes pandemic.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Humans , Risk Factors , Female , Male , Environmental Pollution/adverse effects , Animals , Environmental Exposure/adverse effects , Sex Factors , Sex Characteristics
11.
Toxicology ; 507: 153883, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996996

ABSTRACT

The broad spread of micro(nano)plastics (MNPs) has garnered significant attention in recent years. MNPs have been detected in numerous human organs, indicating that they may also be hazardous to humans. The toxic effects of MNPs have been demonstrated in marine species and experimental animals. The primary pathway and target organ for MNPs entering the human body is the intestinal system, and increasing research has been done on the harmful effects and subsequent mechanisms of exposure to MNPs. Studies on how MNPs affect gut health in humans are scarce, nevertheless. Since rodents are frequently employed as animal models for human ailments, research on rodents exposed to MNPs can provide a more accurate representation of human circumstances. This study examined the effects of MNPs on intestinal microecology, inflammation, barrier function, and ion transport channels in rodents. It also reviewed the signal pathways involved, such as oxidative stress, nuclear factor (NF)-κB, Toll-like receptor (TLR) 4, inflammatory corpuscles, muscarinic acetylcholine receptors (mAChRs), mitogen-activated protein kinase (MAPK), and cell death. This review will offer a conceptual framework for the management and avoidance of associated illnesses.


Subject(s)
Signal Transduction , Animals , Signal Transduction/drug effects , Intestines/drug effects , Microplastics/toxicity , Humans , Oxidative Stress/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Nanoparticles/toxicity
12.
J Environ Manage ; 367: 121880, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059307

ABSTRACT

Plastic weathering in the natural environment is a dynamic and complex process, where the release of microplastics, nanoplastics and additives poses potential threats to ecosystems. Understanding the release of different weathering products from plastics is crucial for predicting and assessing the environmental hazards of plastics. This study systematically explored these phenomena by exposing polystyrene (PS) to UV irradiation and mechanical agitation for different durations (1 day, 5 days, 10 days, 20 days). The degree of aging, yellowing, brittleness, and the abundance of carbonyl (CO) functional groups in PS were all gradually increasing over time. The weathering pattern of PS surfaces manifested as initial particle oxidation followed by later cracks or flakes formation. The release of products was positively correlated with the aging degree of plastics, as well as among the various released products. Laser infrared and Raman tests indicated that, for microplastics, the size range of 10-20 µm consistently dominated over time, while the primary size range of nanoplastics shifted towards smaller sizes. Additives and other soluble products were prone to release from weathering plastics, with 20 different chemicals detected after 20 d. The release of plastic additives was closely related to aging time, additive type, and quantity. This study contributes to our understanding of the weathering process of plastics, clarifies the release patterns of products over time, and the relationships among different products. It helps predict and assess the environmental pollution caused by plastics.


Subject(s)
Microplastics , Plastics , Polystyrenes , Polystyrenes/chemistry , Microplastics/chemistry , Plastics/chemistry
13.
J Hazard Mater ; 476: 135089, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959827

ABSTRACT

The surge in face mask use due to COVID-19 has raised concerns about micro(nano)plastics (MNPs) from masks. Herein, focusing on fabric structure and polymer composition, we investigated MNP generation characteristics, mechanisms, and potential risks of surgical polypropylene (PP) and fashionable polyurethane (PU) masks during their wearing and photoaging based on stereomicroscope, µ-Fourier transform infrared spectroscopy (µ-FTIR), and scanning electron microscope (SEM) techniques. Compared with new PP and PU masks (66 ± 16 MPs/PP-mask, 163 ± 83 MPs/PU-mask), single- and multiple-used masks exhibited remarkably increased MP type and abundance (600-1867 MPs/PP-mask, 607-2167 MPs/PU-mask). Disinfection exacerbated endogenous MP generation in masks, with washing (416 MPs/PP-mask, 30,708 MPs/PU-mask) being the most prominent compared to autoclaving (219 MPs/PP-mask, 553 MPs/PU-mask) and alcohol spray (162 MPs/PP-mask, 18,333 MPs/PU-mask). Photoaging led to massive generation of MPs (8.8 × 104-3.7 × 105 MPs/PP-layer, 1.0 × 105 MPs/PU-layer) and NPs (5.2 × 109-3.6 × 1013 NPs/PP-layer, 3.5 × 1012 NPs/PU-layer) from masks, presenting highly fabric structure-dependent aging modes as "fragmentation" for fine fiber-structure PP mask and "erosion" for 3D mesh-structure PU mask. The MNPs derived from PP/PU mask caused significant deformities of Zebrafish (Danio rerio) larvae. These findings underscore the potential adverse effects of masks on humans and aquatic organisms, advocating to enhance proper use and rational disposal for masks.


Subject(s)
COVID-19 , Masks , Polypropylenes , Polyurethanes , Textiles , Polypropylenes/chemistry , COVID-19/prevention & control , Polyurethanes/chemistry , Humans , Textiles/analysis , Animals , SARS-CoV-2 , Polymers/chemistry , Microplastics/toxicity , Zebrafish , Equipment Contamination/prevention & control
14.
Toxics ; 12(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39058127

ABSTRACT

Micro- and nano-plastics (MNPs) are ubiquitously distributed in the environment, infiltrate organisms through multiple pathways, and accumulate, thus posing potential threats to human health. MNP exposure elicits changes in microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby precipitating immune, neurological, and other toxic effects. The investigation of MNP exposure and its effect on miRNA expression has garnered increasing attention. Following MNP exposure, circRNAs serve as miRNA sponges by modulating gene expression, while lncRNAs function as competing endogenous RNAs (ceRNAs) by fine-tuning target gene expression and consequently impacting protein translation and physiological processes in cells. Dysregulated miRNA expression mediates mitochondrial dysfunction, inflammation, and oxidative stress, thereby increasing the risk of neurodegenerative diseases, cardiovascular diseases, and cancer. This tract, blood, urine, feces, placenta, and review delves into the biotoxicity arising from dysregulated miRNA expression due to MNP exposure and addresses the challenges encountered in this field. This study provides novel insights into the connections between MNPs and disease risk.

15.
Sci Total Environ ; 944: 173881, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871331

ABSTRACT

Plastic debris such as microplastics (MPs) and nanoplastics (NPTs), along with antibiotic resistance genes (ARGs), are pervasive in the environment and are recognized as significant global health and ecological concerns. Micro-/nano-plastics (MNPs) have been demonstrated to favor the spread of ARGs by enhancing the frequency of horizontal gene transfer (HGT) through various pathways. This paper comprehensively and systematically reviews the current study with focus on the influence of plastics on the HGT of ARGs. The critical role of MNPs in the HGT of ARGs has been well illustrated in sewage sludge, livestock farms, constructed wetlands and landfill leachate. A summary of the performed HGT assay and the underlying mechanism of plastic-mediated transfer of ARGs is presented in the paper. MNPs could facilitate or inhibit HGT of ARGs, and their effects depend on the type, size, and concentration. This review provides a comprehensive insight into the effects of MNPs on the HGT of ARGs, and offers suggestions for further study. Further research should attempt to develop a standard HGT assay and focus on investigating the impact of different plastics, including the oligomers they released, under real environmental conditions on the HGT of ARGs.


Subject(s)
Drug Resistance, Microbial , Gene Transfer, Horizontal , Microplastics , Plastics , Drug Resistance, Microbial/genetics
16.
Sci Total Environ ; 942: 173770, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38851343

ABSTRACT

The widespread presence of microplastics and nanoplastics (MPs/NPs) in the environment has become a critical public health issue due to their potential to infiltrate and affect various biological systems. Our review is crucial as it consolidates current data and provides a comprehensive analysis of the cardiovascular impacts of MPs/NPs across species, highlighting significant implications for human health. By synthesizing findings from studies on aquatic and terrestrial organisms, including humans, this review offers insights into the ubiquity of MPs/NPs and their pathophysiological roles in cardiovascular systems. We demonstrated that exposure to MPs/NPs is linked to various cardiovascular ailments such as thrombogenesis, vascular damage, and cardiac impairments in model organisms, which likely extrapolate to humans. Our review critically evaluated methods for detecting MPs/NPs in biological tissues, assessing their toxicity, and understanding their behaviour within the vasculature. These findings emphasise the urgent need for targeted public health strategies and enhanced regulatory measures to mitigate the impacts of MP/NP pollution. Furthermore, the review underlined the necessity of advancing research methodologies to explore long-term effects and potential intergenerational consequences of MP/NP exposure. By mapping out the intricate links between environmental exposure and cardiovascular risks, our work served as a pivotal reference for future research and policymaking aimed at curbing the burgeoning threat of plastic pollution.


Subject(s)
Cardiovascular System , Microplastics , Cardiovascular System/drug effects , Microplastics/toxicity , Microplastics/analysis , Humans , Plastics/toxicity , Animals , Environmental Exposure , Nanoparticles/toxicity , Environmental Monitoring/methods , Environmental Pollutants , Cardiovascular Diseases
17.
Sci Total Environ ; 946: 174267, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936730

ABSTRACT

Nano-plastics (NPs) have emerged as prevalent contaminants in aquatic ecosystems, gaining significant research interest. Nonetheless, limited research has addressed the toxicity mechanisms associated with PS-NPs (polystyrene nanoplastics) of varying particle sizes. In this investigation, genotoxicity, growth patterns, hepatopancreatic damage, and intestinal flora alterations in freshwater shrimp Neocaridina palmata (Shen 1948), subjected to 35 days PS-NPs exposure (two size PS-NPs: 75 nm and 200 nm were used for this experiment, and five concentrations were set: 0 mg/L, 0.5 mg/L, 2.5 mg/L, 5 mg/L, and 10 mg/L concentrations PS-NP concentrations were examined using RNA sequencing, histopathological analyses, enzyme activity assessments, and 16S rRNA sequencing. Noteworthy variations in differentially expressed genes (DEGs) were identified across groups exposed to different PS-NPs sizes. We observed that PS-NPs predominantly instigated cellular component-related processes and induced apoptosis and oxidative stress across tissues via the mitochondrial pathway. Although the 200 nm-PS-NPs are stronger than the 75 nm-PS-NPs in terms of fluorescence intensity, 75 nm-PS-NPs are more likely to promote apoptosis than 200 nm-PS-NPs. PS-NPs impeded standard energy provision in N. palmata, potentially contributing to decreased body length and weight. Moreover, PS-NPs inflicted damage on intestinal epithelial and hepatopancreatic tissues and significantly modified intestinal microbial community structures. Specifically, PS-NPs-induced intestinal damage was marked by a decline in some probiotics (notably Lactobacilli) and a surge in pathogenic bacteria. Moreover, supplementing N. palmata with Lactobacilli appeared ameliorate oxidative stress and strengthen energy metabolism. Our findings provided valuable insights into crustacean toxicity mechanisms when subjected to PS-NPs and the potential risks that different PS-NPs sizes posed to terrestrial ecosystems.


Subject(s)
Hepatopancreas , Particle Size , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Hepatopancreas/drug effects , Intestines/drug effects , Nanoparticles/toxicity , Gastrointestinal Microbiome/drug effects , Microplastics/toxicity , Oxidative Stress/drug effects , Crustacea/drug effects , Multiomics
18.
Sci Total Environ ; 931: 172952, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703841

ABSTRACT

Aquatic environments serve as critical repositories for pollutants and have significantly accumulated micro- and nanoplastics (MNPs) due to the extensive production and application of plastic products. While the disease resistance and immunity of fish are closely linked to the condition of their aquatic habitats, the specific effects of nanoplastics (NPs) and microplastics (MPs) within these environments on fish immune functions are still not fully understood. The present study utilized zebrafish (Danio rerio) embryos and larvae as model organisms to examine the impacts of polystyrene NPs (100 nm) and MPs (5 µm) on fish immune responses. Our findings reveal that NPs and MPs tend to accumulate on the surfaces of embryos and within the intestines of larvae, triggering oxidative stress and significantly increasing susceptibility to Edwardsiella piscicida infection in zebrafish larvae. Transmission electron microscopy examined that both NPs and MPs inflicted damage to the kidney, an essential immune organ, with NPs predominantly inducing endoplasmic reticulum stress and MPs causing lipid accumulation. Transcriptomic analysis further demonstrated that both NPs and MPs significantly suppress the expression of key innate immune pathways, notably the C-type lectin receptor signaling pathway and the cytosolic DNA-sensing pathway. Within these pathways, the immune factor interleukin-1 beta (il1b) was consistently downregulated in both exposure groups. Furthermore, exposure to E. piscicida resulted in restricted upregulation of il1b mRNA and protein levels, likely contributing to diminished disease resistance in zebrafish larvae exposed to MNPs. Our findings suggest that NPs and MPs similarly impair the innate immune function of zebrafish larvae and weaken their disease resistance, highlighting the significant environmental threat posed by these pollutants.


Subject(s)
Immunity, Innate , Larva , Microplastics , Water Pollutants, Chemical , Zebrafish , Animals , Immunity, Innate/drug effects , Microplastics/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Kidney/drug effects , Nanoparticles/toxicity , Fish Diseases/chemically induced , Fish Diseases/immunology , Edwardsiella/physiology
19.
Food Chem ; 454: 139657, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810455

ABSTRACT

Polypropylene (PP) is suitable for a broad range of applications and represents the most extensively utilized plastic in food packaging. Micro- and nano-PP plastics are prevalent categories of microplastics (MPs). However, the majority of MPs particles currently utilized in laboratory studies are man-made polystyrene (PS) spheres, and there has been limited research on micrometer- and nanoscale PP plastic particles. This study aims to employ a top-down approach in crafting micro/nanoparticle (M/NPs) models of PP particles, ensuring their enhanced relevance to real-world environments. Micro/nano PP particles, featuring a negatively charged particle size ranging from 203 to 2101 nm, were synthesized through variations in solution concentration and volume. Simultaneously, the devised MPs model was employed to develop a Raman-based qualitative and quantitative detection method for micro/nano PP particles, considering diverse sizes and concentrations. This method integrates Raman spectroscopy and microscopy to measure PP particles with varying sizes, utilizing the coffee ring effect. The Limit of detection (LOD) for 203 nm PP reached 31.25 µg/mL, while those for 382-2101 nm PP were approximately 3.9 µg/mL. The method underwent quantitative analysis by introducing 203 nm PP nanospheres into real food media (i.e., tea beverages, tea leaves), revealing a minimum LOD of approximately 31.25 µg/mL.


Subject(s)
Microplastics , Particle Size , Polypropylenes , Spectrum Analysis, Raman , Tea , Spectrum Analysis, Raman/methods , Polypropylenes/chemistry , Tea/chemistry , Microplastics/analysis , Microplastics/chemistry , Food Contamination/analysis , Food Packaging/instrumentation , Plastics/chemistry , Nanoparticles/chemistry
20.
Ecotoxicol Environ Saf ; 278: 116426, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718727

ABSTRACT

The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.


Subject(s)
Ecosystem , Microplastics , Plastics , Water Pollutants, Chemical , Animals , Humans , Aquatic Organisms/drug effects , Bioaccumulation , Environmental Monitoring , Food Chain , Microplastics/toxicity , Nanoparticles/toxicity , Plastics/toxicity , Risk Assessment , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL