Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.385
Filter
1.
Chemistry ; : e202402364, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985739

ABSTRACT

Controlling and understanding charge state and metal coordination in carbon nanomaterials is crucial to harnessing their unique properties. Here we describe the synthesis of the well-defined fulleride complex [{(Mesnacnac)Mg}6C70], 2, (Mesnacnac) = HC(MeCNMes)2, Mes = 2,4,6-Me3C6H2, from the reaction of the ß-diketiminate magnesium(I) complex [{(Mesnacnac)Mg}2] with C70 in aromatic solvents. The molecular structure of complex 2 was determined, providing the first high-quality structural study of a complex with the C706- ion. In combination with solution state NMR spectroscopic and DFT computational studies, the changes in geometry and charge distribution in the various atom and bond types of the fulleride unit were investigated. Additionally, the influence of the (Mesnacnac)Mg+ cations on the global and local fulleride coordination environment was examined.

2.
Proc Natl Acad Sci U S A ; 121(29): e2404958121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985767

ABSTRACT

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 µmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.


Subject(s)
Graphite , Hydrogen , Shewanella , Hydrogen/metabolism , Shewanella/metabolism , Shewanella/genetics , Graphite/metabolism , Hydrogenase/metabolism , Hydrogenase/genetics , Electron Transport , Bioreactors , Synthetic Biology/methods , Electrodes , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Periplasm/metabolism , Bioelectric Energy Sources/microbiology
3.
Sci Total Environ ; 946: 174381, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964393

ABSTRACT

Both nanoparticles (NPs) and nano-enabled products have become widely available in consumer markets in the last decade. Surface coating including paints, stains, and sealants, have seen large increases in the inclusion of nanomaterials in their formulations to increase UV resistance, hydrophobicity, and scratch resistance. Currently, most literature studying the release of NPs and byproducts from coated surfaces has focused exclusively on lumber. In this study, well characterized CeO2 NPs were dispersed in either Milli-Q water, or a commercial paint primer and applied to several test surfaces including sanded plywood, drywall, low density polyethylene, acrylonitrile butadiene styrene, polycarbonate, textured polycarbonate with pebble finish, and glass. Coated surfaces were sampled using a method previously developed by U.S. Consumer Product Safety Commission staff to track the release of NPs via simulated dermal contact. Particular attention has been paid to the total amount, and morphology of material released. The total amount of cerium released from coated surfaces was found to be dependent on both the identity of the test surface, as well as the solution used for coating. Water-based application found 22-50 % of the applied cerium removed during testing, while primer-based application showed released rates ranging between 0.1 and 3 %. Finally, the SEM micrographs presented here suggest the release of microplastic particles during simulated dermal contact with plastic surfaces.

4.
J Colloid Interface Sci ; 675: 74-83, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964126

ABSTRACT

Chiral Plasmonic nanomaterials have gradually illustrated intriguing circularly polarized light (CPL)-dependent properties in photocatalysis due to their unique chiral optical activity. However, the connection between chiral characteristics and catalytic performance of these materials in cooperative systems is rarely reported and remains a challenge task. In this work, branched AgAuPt nanoparticles induced by L/d-cysteine (Cys) with strong and perfectly symmetric circular dichroism (CD) signals are synthesized. Chiral branched AgAuPt nanoparticles firstly exhibit superior typical electrocatalytic performance. In the photoelectrocatalytic system, chiral branched AgAuPt nanoparticles demonstrate selective catalytic water splitting performance. Specifically, chiral branched AgAuPt with related CPL irradiation exhibits enhanced acidic hydrogen evolution reaction (HER) performance. Under the continuous irradiation of related CPL, the chiral catalyst generates more heat, which further increases the catalytic activity. This contribution of heat is supported by density functional theory (DFT) calculation results. The changes in chiroptical activity during this process are recorded by variable temperature CD spectra. This work provides a novel paradigm for designing chiral catalysis systems and emphasizes the profound promise of chiral plasmonic nanomaterials as chiral catalysts.

5.
Annu Rev Biomed Eng ; 26(1): 273-306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959389

ABSTRACT

Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.


Subject(s)
COVID-19 , Nanostructures , SARS-CoV-2 , Vaccine Development , Humans , Nanostructures/chemistry , COVID-19/prevention & control , SARS-CoV-2/immunology , COVID-19 Vaccines/chemistry , Animals , Adjuvants, Immunologic/chemistry , Neoplasms/immunology , Neoplasms/prevention & control , Nanoparticles/chemistry , Vaccines , Pandemics/prevention & control
6.
Chirality ; 36(7): e23698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961803

ABSTRACT

Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.


Subject(s)
Nanostructures , Nanostructures/chemistry , Humans , Stereoisomerism , Pharmaceutical Preparations/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
7.
Int Wound J ; 21(7): e14953, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949185

ABSTRACT

Wound healing is a complex process that orchestrates the coordinated action of various cells, cytokines and growth factors. Nanotechnology offers exciting new possibilities for enhancing the healing process by providing novel materials and approaches to deliver bioactive molecules to the wound site. This article elucidates recent advancements in utilizing nanoparticles, nanofibres and nanosheets for wound healing. It comprehensively discusses the advantages and limitations of each of these materials, as well as their potential applications in various types of wounds. Each of these materials, despite sharing common properties, can exhibit distinct practical characteristics that render them particularly valuable for healing various types of wounds. In this review, our primary focus is to provide a comprehensive overview of the current state-of-the-art in applying nanoparticles, nanofibres, nanosheets and their combinations to wound healing, serving as a valuable resource to guide researchers in their appropriate utilization of these nanomaterials in wound-healing research. Further studies are necessary to gain insight into the application of this type of nanomaterials in clinical settings.


Subject(s)
Nanofibers , Nanoparticles , Wound Healing , Wound Healing/drug effects , Humans , Nanofibers/therapeutic use , Nanoparticles/therapeutic use , Nanostructures/therapeutic use , Wounds and Injuries/therapy , Male , Female
8.
Front Bioeng Biotechnol ; 12: 1398052, 2024.
Article in English | MEDLINE | ID: mdl-38952668

ABSTRACT

Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.

9.
Int J Nanomedicine ; 19: 6399-6425, 2024.
Article in English | MEDLINE | ID: mdl-38952676

ABSTRACT

Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.


Subject(s)
Myocardial Infarction , Nanomedicine , Myocardial Infarction/therapy , Humans , Animals , Myocytes, Cardiac/drug effects , Antioxidants/therapeutic use , Nanostructures/therapeutic use , Nanostructures/chemistry , Neovascularization, Physiologic/drug effects
10.
Sci Rep ; 14(1): 15262, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961116

ABSTRACT

Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).


Subject(s)
Adjuvants, Immunologic , Chickens , Chitosan , Nanoparticles , Poultry Diseases , Animals , Chickens/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Nanoparticles/chemistry , Chitosan/chemistry , Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Silicon Dioxide/chemistry , Adjuvants, Vaccine , Polymers/chemistry , Drug Carriers/chemistry , Pasteurellaceae/immunology
11.
Chimia (Aarau) ; 78(6): 397-402, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38946412

ABSTRACT

Nanomaterials hold immense potential for numerous applications in energy, health care, and environmental sectors, playing an important role in our daily lives. Their utilization spans from improving energy efficiency to enhancing medical diagnostics, and mitigating environmental pollution, thus presenting a multifaceted approach towards achieving sustainability goals. To ensure the sustainable and safe utilization of nanomaterials, a thorough evaluation of potential hazards and risks is essential throughout their lifecycle-from resource extraction and production to use and disposal. In this review, we focus on understanding and addressing potential environmental and health risks associated with nanomaterial utilization. We advocate for a balanced approach with early hazard identification, safe-by-design principles, and life cycle assessments, while emphasizing safe handling and disposal practices, collaboration, and continuous improvement. Our goal is to ensure responsible nanotechnology development, fostering innovation alongside environmental and community well-being, through a holistic approach integrating science, ethics, and proactive risk assessment.


Subject(s)
Nanostructures , Risk Assessment , Humans , Environmental Pollution/prevention & control , Nanotechnology/methods
12.
Pest Manag Sci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970236

ABSTRACT

BACKGROUND: Grapholita molesta is an important and harmful fruit pest worldwide, with widespread feeding hosts. Trypsin, an indispensable hydrolytic digestive protease in the insect gut, is crucial in digestion, growth and development. We analyzed the characteristics of the trypsin-encoding genes, screened for the optimal dose of RNAi mediated by nanocarriers, and investigated various indices of larval growth and development of G. molesta. RESULTS: Gut content (GC) and RNase A degraded double-stranded RNA (dsRNA), with a faster degradation rate at higher concentrations. Star polycation (SPc) nanomaterials protected dsGFP from degradation by anion-cation binding and did not migrate through agarose gel. The key conserved motifs of the trypsin-encoding genes were similar, exhibiting high homology with those in other lepidopteran insects. An interference efficiency of ≈70% was achieved with SPc nanomaterial-mediated RNA interference with 0.05 µg dsRNA. The efficiency of continuous interference was stable. Trypsin activity, body weight of 8-day-old larvae, pupal weight and emergence rate were significantly reduced, and the larval stage was significantly prolonged. CONCLUSION: The investigated trypsin gene is a key target gene in the growth and development of G. molesta. We investigated the efficiency and convenience of feeding SPc nanomaterials in a functional study of insects. Our results provide valuable data for the development of efficient trypsin-targeting pesticides. © 2024 Society of Chemical Industry.

13.
Open Res Eur ; 4: 43, 2024.
Article in English | MEDLINE | ID: mdl-38957297

ABSTRACT

Background: This article introduces an innovative classification methodology to identify nanowires within scanning electron microscope images. Methods: Our approach employs advanced image manipulation techniques in conjunction with machine learning-based recognition algorithms. The effectiveness of our proposed method is demonstrated through its application to the categorization of scanning electron microscopy images depicting nanowires arrays. Results: The method's capability to isolate and distinguish individual nanowires within an array is the primary factor in the observed accuracy. The foundational data set for model training comprises scanning electron microscopy images featuring 240 III-V nanowire arrays grown with metal organic chemical vapor deposition on silicon substrates. Each of these arrays consists of 66 nanowires. The results underscore the model's proficiency in discerning distinct wire configurations and detecting parasitic crystals. Our approach yields an average F1 score of 0.91, indicating high precision and recall. Conclusions: Such a high level of performance and accuracy of ML methods demonstrate the viability of our technique not only for academic but also for practical commercial implementation and usage.

14.
Health Care Sci ; 3(3): 181-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947365

ABSTRACT

The exploration of newer antibacterial strategies is driven by antibiotic-resistant microbes that cause serious public health issues. In recent years, nanoscale materials have developed as an alternative method to fight infections. Despite the fact that many nanomaterials have been discovered to be harmful, numerous researchers have shown a keen interest in nanoparticles (NPs) made of noble metals like silver, gold and platinum. To make environmentally safe NPs from plants, green chemistry and nanotechnology have been combined to address the issue of toxicity. The study of bimetallic nanoparticles (BNPs) has increased tremendously in the past 10 years. The production of BNPs mediated by natural extracts is straightforward, low cost and environmentally friendly. Due to their low toxicity, safety and biological stability, noble BNPs with silver, gold, platinum and palladium have the potential to be used in biomedical applications. They have a significant impact on human health and are used in medicine and pharmacy due to their biological characteristics, which include catalytic, antioxidant, antibacterial, antidiabetic, anticancer, hepatoprotective and regenerative activity.

15.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978228

ABSTRACT

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

16.
Adv Healthc Mater ; : e2401525, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978444

ABSTRACT

Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.

17.
ACS Appl Mater Interfaces ; 16(27): 34783-34797, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949260

ABSTRACT

Trauma is the leading cause of death for adults under the age of 44. Internal bleeding remains a significant challenge in medical emergencies, necessitating the development of effective hemostatic materials that could be administered by paramedics before a patient is in the hospital and treated by surgeons. In this study, we introduce a graphene oxide (GO)-based PEGylated synthetic hemostatic nanomaterial with an average size of 211 ± 83 nm designed to target internal bleeding by mimicking the role of fibrinogen. Functionalization of GO-g-PEG with peptides derived from the α-chain of fibrinogen, such as GRGDS, or the γ-chain of fibrinogen, such as HHLGGAKQAGDV:H12, was achieved with peptide loadings of 72 ± 6 and 68 ± 15 µM, respectively. In vitro studies with platelet-rich plasma (PRP) under confinement demonstrated aggregation enhancement of 39 and 24% for GO-g-PEG-GRGDS and GO-g-PEG-H12, respectively, compared to buffer, while adenosine diphosphate (ADP) alone induced a 5% aggregation. Compared to the same materials in the absence of ADP, GO-g-PEG-GRGDS achieved a 47% aggregation enhancement, while GO-g-PEG-H12 a 25% enhancement. This is particularly important for injectable hemostats and highlights the fact that our nanographene-based materials can only act as hemostats in the presence of agonists, reducing the possibility of unwanted clotting during circulation. Further studies on collagen-coated wells under dynamic flow revealed statistically significant augmentation of PRP fluorescence signal using GRGDS- or H12-coated GO-g-PEG compared to controls. Hemolysis studies showed <1% lysis of red blood cells (RBCs) at the highest PEGylated nanographene concentration. Finally, whole human blood coagulation studies reveal faster and more pronounced clotting using our nanohemostats vs PBS control from 3 min and below (blood is clotted with 10% CaCl2 within 4-5 min), with the biggest differences to be shown at 2 and 1 min. At 1 min, the clot weight was found to be ∼45% of that between 4 and 5 min, while no clot was formed in PBS-treated blood. Reduction of CaCl2 to 5 and 3%, or utilization of prostaglandin E1, an anticoagulant, still leads to clots but of smaller weight. The findings highlight the potential of our fibrinogen-mimic PEGylated nanographene as a promising non-hemolytic injectable scaffold for targeting internal bleeding, offering insights into its platelet aggregation capabilities under confinement and under dynamic flow as well as its pronounced coagulation abilities.


Subject(s)
Fibrinogen , Graphite , Hemostatics , Graphite/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Humans , Fibrinogen/chemistry , Fibrinogen/metabolism , Polyethylene Glycols/chemistry , Blood Coagulation/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Hemorrhage/drug therapy
18.
Sci Total Environ ; 947: 174505, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971252

ABSTRACT

Nanobiotechnology is a potentially safe and sustainable strategy for both agricultural production and soil remediation, yet the potential of nanomaterials (NMs) application to remediate heavy metal(loid)-contaminated soils is still unclear. A meta-analysis with approximately 6000 observations was conducted to quantify the effects of NMs on safe crop production in soils contaminated with heavy metal(loid) (HM), and a machine learning approach was used to identify the major contributing features. Applying NMs can elevate the crop shoot (18.2 %, 15.4-21.2 %) and grain biomass (30.7 %, 26.9-34.9 %), and decrease the shoot and grain HM concentration by 31.8 % (28.9-34.5 %) and 46.8 % (43.7-49.8 %), respectively. Iron-NMs showed a greater potential to inhibit crop HM uptake compared to other types of NMs. Our result further demonstrates that NMs application substantially reduces the potential health risk of HM in crop grains by human health risk assessment. The NMs-induced reduction in HM accumulation was associated with decreasing HM bioavailability, as well as increased soil pH and organic matter. A random forest model demonstrates that soil pH and total HM concentration are the two significant features affecting shoot HM accumulation. This analysis of the literature highlights the significant potential of NMs application in promoting safe agricultural production in HM-contaminated agricultural lands.

19.
Colloids Surf B Biointerfaces ; 242: 114074, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972257

ABSTRACT

As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.

20.
Comput Struct Biotechnol J ; 25: 105-126, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38974014

ABSTRACT

The adoption of innovative advanced materials holds vast potential, contingent upon addressing safety and sustainability concerns. The European Commission advocates the integration of Safe and Sustainable by Design (SSbD) principles early in the innovation process to streamline market introduction and mitigate costs. Within this framework, encompassing ecological, social, and economic factors is paramount. The NanoSafety Cluster (NSC) delineates key safety and sustainability areas, pinpointing unresolved issues and research gaps to steer the development of safe(r) materials. Leveraging FAIR data management and integration, alongside the alignment of regulatory aspects, fosters informed decision-making and innovation. Integrating circularity and sustainability mandates clear guidance, ensuring responsible innovation at every stage. Collaboration among stakeholders, anticipation of regulatory demands, and a commitment to sustainability are pivotal for translating SSbD into tangible advancements. Harmonizing standards and test guidelines, along with regulatory preparedness through an exchange platform, is imperative for governance and market readiness. By adhering to these principles, the effective and sustainable deployment of innovative materials can be realized, propelling positive transformation and societal acceptance.

SELECTION OF CITATIONS
SEARCH DETAIL
...