Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.231
Filter
1.
NeuroRehabilitation ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39093082

ABSTRACT

BACKGROUND: Healthcare professionals deliver pain education, yet their perception of pain experiences is not well understood, which can affect their interactions with patients in pain. OBJECTIVE: This study explored Korean healthcare professionals' perceptions of the usefulness of assessing pain concepts and beliefs and the importance of domains identified in the pain literature. METHODS: This descriptive cross-sectional study employed an online survey administered to nurses, physical therapists, and physicians, including the Neurophysiology of Pain Questionnaire, Tampa Scale for Kinesiophobia, and related optional open-ended questions. RESULTS: Most participants acknowledged the importance and usefulness of assessing understanding of pain concepts but anticipated patients' difficulty comprehending items assessing biological mechanisms underlying pain. Participants questioned the items' accuracy, indicating their limited pain knowledge and the necessity of reducing literacy demands. The critical domains of pain education were learning about pain, external factors influencing pain, and pain as a form of protection. CONCLUSION: Participants had suboptimal pain knowledge but emphasized decreasing literacy demands of pain neurophysiology items. Additionally, it is necessary to develop and implement a pain education program to improve pain-related knowledge and provide educational content for healthcare professionals encountering patients in pain.

2.
Neurobiol Dis ; : 106616, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103021

ABSTRACT

BACKGROUND: Increased 4-12 Hz oscillatory activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop is reported in dystonia. Coherence analysis is a measure of linear coupling between two signals, revealing oscillatory activity drives that are common across motor units. By performing coherence analysis, activity of the CBGTC-loop can be measured with modalities like local field potentials (LFPs), electromyography (EMG), and electro-encephalography (EEG). The aim of this study is to perform a systematic review on the use of coherence analysis for clinical assessment and treatment of dystonia. METHODS: A systematic review was performed on a search in Embase and PubMed on June 28th, 2023. All studies incorporating coherence analysis and an adult dystonia cohort were included. Three authors evaluated the eligibility of the articles. Quality was assessed using the QUADAS-2 checklist. RESULTS: A total of 41 articles were included, with data of 395 adult dystonia patients. In the selected records, six different types of coherence were investigated: corticocortical, corticopallidal, corticomuscular, pallidopallidal, pallidomuscular, and intermuscular coherence. Various types of 4-12 coherence were found to be increased in all dystonia subtypes. CONCLUSION: There is increased 4-12 Hz coherence found between the cortex, basal ganglia, and affected muscles in all dystonia subtypes. However, the relationship between 4 and 12 Hz coherence and the dystonic clinical state has not been established. DBS treatment leads to a reduction of 4-12 Hz coherence. In combination with the results of this review, the 4-12 Hz frequency band can be used as a promising phenomenon for the development of a biomarker.

3.
QJM ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970371

ABSTRACT

BACKGROUND: As the time available to spend with patients decreases, a rapid test for bedside diagnosis of carpal tunnel syndrome (CTS) could be useful. AIM: We describe the forearm elevation-compression test (FECT) in this context. The FECT was assessed in 40 patients with clinically suspected carpal tunnel syndrome and compared to Tinel's and Phalen's signs. Routine electromyography and nerve conduction tests (EMG/NCT) were performed in all cases. In addition, 85 healthy controls were examined by FECT and compared to the patient group. RESULTS: All three provocative tests, particularly FECT were frequently positive in suspected CTS. Neurophysiological tests were normal in 5 of 40 cases of clinically suspected CTS and the FECT was positive in all of these suggesting a positive predictive value of 87.5% if one accepts EMG/NCT as the reference. Amongst the healthy controls 18 of 85 (21.2%) were positive on the FECT suggestive of a high false positive rate or subclinical disease. CONCLUSION: It is proposed that the FECT is a useful addition to the clinical examination of suspected CTS. Although the positive rate may be falsely elevated this is offset by restricting the latency for tingling onset to 10 seconds or less (FECT2).

4.
Front Pharmacol ; 15: 1349105, 2024.
Article in English | MEDLINE | ID: mdl-38962301

ABSTRACT

Emergence delirium is a common postoperative complication in patients undergoing general anesthesia, especially in children. In severe cases, it can cause unnecessary self-harm, affect postoperative recovery, lead to parental dissatisfaction, and increase medical costs. With the widespread use of inhalation anesthetic drugs (such as sevoflurane and desflurane), the incidence of emergence delirium in children is gradually increasing; however, its pathogenesis in children is complex and unclear. Several studies have shown that age, pain, and anesthetic drugs are strongly associated with the occurrence of emergence delirium. Alterations in central neurophysiology are essential intermediate processes in the development of emergence delirium. Compared to adults, the pediatric nervous system is not fully developed; therefore, the pediatric electroencephalogram may vary slightly by age. Moreover, pain and anesthetic drugs can cause changes in the excitability of the central nervous system, resulting in electroencephalographic changes. In this paper, we review the pathogenesis of and prevention strategies for emergence delirium in children from the perspective of brain electrophysiology-especially for commonly used pharmacological treatments-to provide the basis for understanding the development of emergence delirium as well as its prevention and treatment, and to suggest future research direction.

5.
Elife ; 132024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968311

ABSTRACT

Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether ('invariance'), represented in non-interfering subspaces of population activity ('factorization') or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters - lighting, background, camera viewpoint, and object pose - in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.


When looking at a picture, we can quickly identify a recognizable object, such as an apple, applying a single word label to it. Although extensive neuroscience research has focused on how human and monkey brains achieve this recognition, our understanding of how the brain and brain-like computer models interpret other complex aspects of a visual scene ­ such as object position and environmental context ­ remains incomplete. In particular, it was not clear to what extent object recognition comes at the expense of other important scene details. For example, various aspects of the scene might be processed simultaneously. On the other hand, general object recognition may interfere with processing of such details. To investigate this, Lindsey and Issa analyzed 12 monkey and human brain datasets, as well as numerous computer models, to explore how different aspects of a scene are encoded in neurons and how these aspects are represented by computational models. The analysis revealed that preventing effective separation and retention of information about object pose and environmental context worsened object identification in monkey cortex neurons. In addition, the computer models that were the most brain-like could independently preserve the other scene details without interfering with object identification. The findings suggest that human and monkey high level ventral visual processing systems are capable of representing the environment in a more complex way than previously appreciated. In the future, studying more brain activity data could help to identify how rich the encoded information is and how it might support other functions like spatial navigation. This knowledge could help to build computational models that process the information in the same way, potentially improving their understanding of real-world scenes.


Subject(s)
Magnetic Resonance Imaging , Neural Networks, Computer , Animals , Humans , Male , Macaca mulatta/physiology , Visual Pathways/physiology , Visual Perception/physiology , Visual Cortex/physiology , Female , Photic Stimulation , Models, Neurological
6.
Cell Rep ; 43(8): 114534, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067025

ABSTRACT

To determine whether post-natal improvements in form vision result from changes in mid-level visual cortex, we studied neuronal and behavioral responses to texture stimuli that were matched in local spectral content but varied in "naturalistic" structure. We made longitudinal measurements of visual behavior from 16 to 95 weeks of age, and of neural responses from 20 to 56 weeks. We also measured behavioral and neural responses in near-adult animals more than 3 years old. Behavioral sensitivity reached half-maximum around 25 weeks of age, but neural sensitivities remained stable through all ages tested. Neural sensitivity to naturalistic structure was highest in V4, lower in V2 and inferotemporal cortex (IT), and barely discernible in V1. Our results show a dissociation between stable neural performance and improving behavioral performance, which may reflect improved processing capacity in circuits downstream of visual cortex.

7.
Brain Sci ; 14(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39061387

ABSTRACT

The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.

8.
Brain Sci ; 14(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39061435

ABSTRACT

Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.

9.
J Pers Med ; 14(7)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39063929

ABSTRACT

Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.

10.
BMJ Open ; 14(7): e078281, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991682

ABSTRACT

INTRODUCTION: Therapeutic interventions for disorders of consciousness lack consistency; evidence supports non-invasive brain stimulation, but few studies assess neuromodulation in acute-to-subacute brain-injured patients. This study aims to validate the feasibility and assess the effect of a multi-session transcranial alternating current stimulation (tACS) intervention in subacute brain-injured patients on recovery of consciousness, related brain oscillations and brain network dynamics. METHODS AND ANALYSES: The study is comprised of two phases: a validation phase (n=12) and a randomised controlled trial (n=138). Both phases will be conducted in medically stable brain-injured adult patients (traumatic brain injury and hypoxic-ischaemic encephalopathy), with a Glasgow Coma Scale score ≤12 after continuous sedation withdrawal. Recruitment will occur at the intensive care unit of a Level 1 Trauma Centre in Montreal, Quebec, Canada. The intervention includes a 20 min 10 Hz tACS at 1 mA intensity or a sham session over parieto-occipital cortical sites, repeated over five consecutive days. The current's frequency targets alpha brain oscillations (8-13 Hz), known to be associated with consciousness. Resting-state electroencephalogram (EEG) will be recorded four times daily for five consecutive days: pre and post-intervention, at 60 and 120 min post-tACS. Two additional recordings will be included: 24 hours and 1-week post-protocol. Multimodal measures (blood samples, pupillometry, behavioural consciousness assessments (Coma Recovery Scale-revised), actigraphy measures) will be acquired from baseline up to 1 week after the stimulation. EEG signal analysis will focus on the alpha bandwidth (8-13 Hz) using spectral and functional network analyses. Phone assessments at 3, 6 and 12 months post-tACS, will measure long-term functional recovery, quality of life and caregivers' burden. ETHICS AND DISSEMINATION: Ethical approval for this study has been granted by the Research Ethics Board of the CIUSSS du Nord-de-l'Île-de-Montréal (Project ID 2021-2279). The findings of this two-phase study will be submitted for publication in a peer-reviewed academic journal and submitted for presentation at conferences. The trial's results will be published on a public trial registry database (ClinicalTrials.gov). TRIAL REGISTRATION NUMBER: NCT05833568.


Subject(s)
Consciousness Disorders , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Consciousness Disorders/therapy , Consciousness Disorders/physiopathology , Consciousness Disorders/etiology , Electroencephalography , Randomized Controlled Trials as Topic , Adult , Critical Care/methods , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/physiopathology , Brain/physiopathology , Brain Injuries/therapy , Brain Injuries/physiopathology , Brain Injuries/complications , Glasgow Coma Scale , Male , Female , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/physiopathology , Consciousness
11.
J Clin Neurosci ; 126: 363, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059079
12.
Expert Rev Neurother ; 24(8): 799-814, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39016323

ABSTRACT

INTRODUCTION: Essential tremor (ET) and Parkinson's disease (PD) are the most common causes of tremor and the most prevalent movement disorders, with overlapping clinical features that can lead to diagnostic challenges, especially in the early stages. AREAS COVERED: In the present paper, the authors review the clinical and experimental studies and emphasized the major aspects to differentiate between ET and PD, with particular attention to cardinal phenomenological features of these two conditions. Ancillary and experimental techniques, including neurophysiology, neuroimaging, fluid biomarker evaluation, and innovative methods, are also discussed for their role in differential diagnosis between ET and PD. Special attention is given to investigations and tools applicable in the early stages of the diseases, when the differential diagnosis between the two conditions is more challenging. Furthermore, the authors discuss knowledge gaps and unsolved issues in the field. EXPERT OPINION: Distinguishing ET and PD is crucial for prognostic purposes and appropriate treatment. Additionally, accurate diagnosis is critical for optimizing clinical and experimental research on pathophysiology and innovative therapies. In a few years, integrated technologies could enable accurate, reliable diagnosis from early disease stages or prodromal stages in at-risk populations, but further research combining different techniques is needed.


Subject(s)
Essential Tremor , Parkinson Disease , Essential Tremor/diagnosis , Essential Tremor/physiopathology , Humans , Parkinson Disease/diagnosis , Parkinson Disease/complications , Diagnosis, Differential , Neuroimaging/methods , Biomarkers
13.
Sci Rep ; 14(1): 17654, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39085330

ABSTRACT

Motor fatigue in Multiple Sclerosis (MS) is due to reduced motor cortex (M1) output and altered sensorimotor network (SMN) modulation. Natalizumab, a disease-modifying therapy, reduces neuroinflammation and improves fatigue. However, some patients treated with natalizumab experience fatigue recurrence ('wearing-off') before subsequent infusions. Wearing-off provides a valuable window into MS-related motor fatigue mechanisms in a controlled, clinically stable, setting. This study investigates whether wearing-off is associated with worsening motor fatigue and its neurophysiological mechanisms and assesses natalizumab's effect on MS-related fatigue. Forty-five relapsing-remitting MS patients with wearing-off symptoms were evaluated pre- and post-natalizumab infusion. Assessments included evaluating disability levels, depressive symptoms, and the impact of fatigue symptoms on cognitive, physical, and psychosocial functioning. The motor fatigue index was computed through the number of blocks completed during a fatiguing task and peripheral, central, and supraspinal fatigue (M1 output) were evaluated by measuring the superimposed twitches evoked by peripheral nerve and transcranial magnetic stimulation of M1. Transcranial magnetic stimulation-electroencephalography assessed M1 effective connectivity by measuring TMS-evoked potentials (TEPs) within the SMN before- and after the task. We found that wearing-off was associated with increased motor fatigue index, increased central and supraspinal fatigue, and diminished task-related modulation of TEPs compared to post-natalizumab infusion. Wearing-off was also associated with worsened fatigue impact and depression symptom scores. We conclude that the wearing-off phenomenon is associated with worsening motor fatigue due to altered M1 output and modulation of the SMN. Motor fatigue in MS may reflect reversible, inflammation-related changes in the SMN that natalizumab can modulate. Our findings apply primarily to MS patients receiving natalizumab, emphasizing the need for further research on other treatments with wearing-off.


Subject(s)
Natalizumab , Transcranial Magnetic Stimulation , Humans , Natalizumab/therapeutic use , Natalizumab/adverse effects , Female , Male , Adult , Fatigue/etiology , Motor Cortex/physiopathology , Motor Cortex/drug effects , Middle Aged , Evoked Potentials, Motor/drug effects , Multiple Sclerosis/drug therapy , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/complications , Immunologic Factors/therapeutic use , Immunologic Factors/adverse effects , Immunologic Factors/administration & dosage , Muscle Fatigue/drug effects , Electroencephalography
14.
BMJ Open ; 14(7): e087566, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067884

ABSTRACT

INTRODUCTION: Motor-evoked potentials (MEP) are widely used to mitigate the risk of nerve injury resulting from surgical manipulation. Infants are more susceptible to anaesthetics that suppress MEP because of the immaturity of their nervous structures. Current evidence of the impact of the interaction between a small dose of sevoflurane and propofol-based total intravenous anaesthesia (TIVA) on MEP in infants is controversial. This current study aims to evaluate the impact of the coadministration of low-dose sevoflurane with propofol-based TIVA on MEP in infants. METHODS AND ANALYSIS: A randomised controlled study will be conducted at a single tertiary care children's hospital in Japan between July 2024 and June 2029. Children between 35 and 87 weeks of postconceptual age undergoing spinal surgery requiring MEP under general anaesthesia will be enrolled in this study. The participants will be randomly allocated into two groups: propofol+remifentanil with (intervention group) or without (control group) low-dose sevoflurane (0.10-0.15 age-adjusted minimum alveolar concentration). MEP top-to-bottom amplitudes will be measured at two chronological points: T1 (first transcranial MEP (TcMEP) recording), T2 (second TcMEP recording) in the same patient. The primary and secondary endpoints will be a reduction in MEP amplitudes (T1-T2) in the right upper and lower extremities between the control and intervention groups, respectively. The sample size was calculated to be a total of 40 based on the preliminary data of 10 infants, which showed a 35% reduction in mean values of MEP amplitudes in the right adductor muscle (SD=31) with a 10% assumed dropout rate. ETHICS AND DISSEMINATION: The study protocol was approved by the Institutional Review Board of the Aichi Children's Health and Medical Center (2022058). The results will be reported in a peer-reviewed journal at the relevant academic conference. TRIAL REGISTRATION NUMBER: jRCT1041230094.


Subject(s)
Anesthetics, Intravenous , Evoked Potentials, Motor , Propofol , Sevoflurane , Humans , Sevoflurane/administration & dosage , Sevoflurane/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Infant , Evoked Potentials, Motor/drug effects , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Anesthetics, Inhalation/administration & dosage , Male , Female , Randomized Controlled Trials as Topic , Remifentanil/administration & dosage , Remifentanil/pharmacology , Japan
15.
Pract Neurol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39059794

ABSTRACT

Bariatric surgery is being undertaken more frequently in response to rising levels of obesity but is increasingly also requested as a cosmetic choice. Nutritional deficiencies are a recognised consequence of gastrectomy, with potentially severe and permanent neurological sequelae. We present two cases of acute, severe polyneuropathy following sleeve gastrectomy. Severe thiamine deficiency was considered in both cases but with delayed proof and a significant initial differential diagnosis. Neurologists must have a high index of suspicion for the peripheral as well as central presentations of thiamine deficiency to avoid permanent disability. We also call for explicit information resources warning of the risk and signs of thiamine deficiency to be provided routinely to patients after gastrectomy.

17.
Elife ; 132024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038076

ABSTRACT

To what extent does speech and music processing rely on domain-specific and domain-general neural networks? Using whole-brain intracranial EEG recordings in 18 epilepsy patients listening to natural, continuous speech or music, we investigated the presence of frequency-specific and network-level brain activity. We combined it with a statistical approach in which a clear operational distinction is made between shared, preferred, and domain-selective neural responses. We show that the majority of focal and network-level neural activity is shared between speech and music processing. Our data also reveal an absence of anatomical regional selectivity. Instead, domain-selective neural responses are restricted to distributed and frequency-specific coherent oscillations, typical of spectral fingerprints. Our work highlights the importance of considering natural stimuli and brain dynamics in their full complexity to map cognitive and brain functions.


Subject(s)
Music , Humans , Male , Female , Adult , Nerve Net/physiology , Speech/physiology , Auditory Perception/physiology , Epilepsy/physiopathology , Young Adult , Electroencephalography , Cerebral Cortex/physiology , Electrocorticography , Speech Perception/physiology , Middle Aged , Brain Mapping
19.
Clin Neurophysiol ; 165: 166-179, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39033698

ABSTRACT

OBJECTIVE: The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS: Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS: This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION: Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE: Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.

20.
Stereotact Funct Neurosurg ; : 1, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008968

ABSTRACT

INTRODUCTION: Anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) is an increasingly promising treatment option for refractory epilepsy. Optimal therapeutic benefit has been associated with stimulation at the junction of ANT and the mammillothalamic tract (mtt), but electrophysiologic markers of this target are lacking. The present study examined microelectrode recordings (MER) during DBS to identify unique electrophysiologic characteristics of ANT and the ANT-mtt junction. METHODS: Ten patients with medically refractory epilepsy underwent MER during ANT-DBS implantation under general anesthesia. MER locations were determined based on coregistration of preoperative MRI, postoperative CT, and a stereotactic atlas of the thalamus (Morel atlas). Several neurophysiological parameters including single unit spiking rate, bursting properties, theta and alpha power and cerebrospinal fluid (CSF)-normalized root mean square (NRMS) of multiunit activity were characterized at recording depths and compared to anatomic boundaries. RESULTS: From sixteen hemispheres, 485 recordings locations were collected from a mean of 30.3 (15.64 ± 5.0 mm) recording spans. Three-hundred and ninety-four of these recording locations were utilized further for analysis of spiking and bursting rates, after excluding recordings that were more than 8 mm above the putative ventral ANT border. The ANT region exhibited discernible features including: (1) mean spiking rate (7.52 Hz ± 6.9 Hz; one-way analysis of variance test, p = 0.014 when compared to mediodorsal nucleus of the thalamus [MD], mtt, and CSF), (2) the presence of bursting activity with 40% of ANT locations (N = 59) exhibited bursting versus 24% the mtt (χ2; p < 0.001), and 32% in the MD (p = 0.38), (3) CSF-NRMS, a proxy for neuronal density, exhibited well demarcated changes near the entry and exit of ANT (linear regression, R = -0.33, p < 0.001). Finally, in the ANT, both theta (4-8 Hz) and alpha band power (9-12 Hz) were negatively correlated with distance to the ventral ANT border (linear regression, p < 0.001 for both). The proportion of recordings with spiking and bursting activity was consistently highest 0-2 mm above the ventral ANT border with the mtt. CONCLUSION: We observed several electrophysiological markers demarcating the ANT superior and inferior borders including multiple single cell and local field potential features. A local maximum in neural activity just above the ANT-mtt junction was consistent with the previously described optimal target for seizure reduction. These features may be useful for successful targeting of ANT-DBS for epilepsy.

SELECTION OF CITATIONS
SEARCH DETAIL