Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 954: 176694, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366563

ABSTRACT

Nitrogen cycling is one of the most important biogeochemical processes on Earth, and denitrification, anammox and DNRA processes are important nitrogen cycling processes in estuarine ecosystems. However, due to the large input of anthropogenic nitrogen sources, a large number of environmental problems have now occurred in the estuary. But the global patterns and controlling factors of denitrification, anammox and DNRA rates in wetland marine ecosystems are not yet known. We reached our conclusions through a global synthesis of 546 observation sites from 78 peer-reviewed papers: The three rates were generally higher in areas near wetlands than in coastal areas. The rate of denitrification was highest in the subtropical region the seasonal variability was not significant; and TOC was the main factor controlling denitrification. The rate of anammox was significantly higher in the subtropical region than in the tropical and boreal zones, and the seasonal variability was significant; and at the same time, TN was the main driver of the anammox rate of the wetland ocean. DNRA rates were significantly higher in the tropics than in the subtropics and temperate zones; and the main driver of DNRA rates was temperature. Nitrogen cycle functional genes also had an indirect effect on their rates. With NH4 + -N significantly affecting nirK abundance and TN significantly affecting the gene abundance of nirS; TOC and TN had a greater effect on hzo abundance, which indirectly affected anammox rates; for DNRA, C/N significantly affects the gene abundance of nrfA, which indirectly affects the DNRA rate. Therefore, the findings of this study indicate that physicochemical indicators about N and climatic characteristics have a profound effect on the nitrogen cycling process, which provides a good feedback for studying the role of denitrification and provides a positive impact on global climate and environmental governance.

2.
Article in English | MEDLINE | ID: mdl-39370467

ABSTRACT

Urban rivers worldwide have been increasingly threatened by nitrate (NO3-) pollution. The Xianyang-Xi'an segment of the Weihe River, located in the loess plateau with serious soil erosion, has been highly urbanized and with intensive agricultural activities. Tracing the sources and transformations of NO3- is particularly challenging for this watershed which has multiple N sources and variable environmental factors. In this study, integrating antecedent studies with multiple stable isotopes and MixSIAR models, these river basins can be categorized into three classes: (1) urban areas, sewage, and manure were the predominant sources of NO3- in the Weihe River's mainstream, accounting for 73.4 ± 12.8%; (2) suburban areas, sewage and manure (Fenghe River, 58.0 ± 14.0%; Bahe River, 53.9 ± 15.0%) were recognized as the main sources of NO3-; (3) and the rural areas, ammonium nitrogen fertilizers were identified as the primary source of NO3- in the Heihe and Laohe Rivers. In addition, nitrification dominated the mainstream of the Weihe, Fenghe, and Bahe Rivers, while neither denitrification nor nitrification was evident in the Heihe and Laohe Rivers. In conclusion, this study is important for the improvement of surface water quality of rivers with different land use types and the development of targeted water environment management.

3.
J Environ Manage ; 370: 122671, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357443

ABSTRACT

Tailwater from wastewater treatment plants (WWTP) usually reduces the nitrogen (N) removal efficiency while simultaneously elevates nitrous oxide (N2O) emissions due to the low carbon-nitrogen (C/N) ratio. Conflicts between N removal and N2O emissions require mitigation by selecting appropriate aquatic plants for tailwater treatment. In this study, a simulated tailwater mesocosm was established using three aquatic plants including Eichhornia crassipes, Myriophyllum aquaticum and Pistia stratiotes. Results of the 15N isotope mass balance analysis revealed the considerable contributions from plant uptake and benthic retention to overall N removal. It was demonstrated that the N assimilation efficiency of aquatic plants depended more on the root-shoot ratio rather than on growth rate. Furthermore, aquatic plants indirectly influence microbial N removal and N2O emissions by altering the water quality parameters. Additionally, aquatic plants could regulate the N transformation through affecting the structure of bacterial community, including microbial abundance, diversity and association networks. Overall, the study underlined the enormous capacities of E. crassipes and P. stratiotes for N uptake and N2O mitigation in tailwater treatment. Utilizing these two aquatic plants for phytoremediation may help mitigate the conflict between tailwater purification and N2O production.

4.
Sci Total Environ ; 953: 176218, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39270856

ABSTRACT

Nitrogen (N) fertilizer is often used in production practice to effectively maintain crop productivity; however, low nitrogen use efficiency (Nue) has always been a problem. Specifically, the transformation and utilization of nitrogen fertilizer by biochar and the driving mechanisms remain unclear. We used four biochar application rates (0, 3750, 7500, and 11,250 kg·ha-1) and analyzed the effects of biochar on nitrogen fertilizer utilization, residue, and loss over three years using 15N isotope tracer technology. The results showed that (1) biochar improved the nitrogen use efficiency of maize plants, reduced total nitrogen loss, and increased the maize yield. Compared to the control treatment in the same year, the application of 7500 kg·ha-1 biochar increased the nitrogen use efficiency by 24.27 %, 27.77 %, and 35.82 %, and the yield increased by 21.1 %, 26.7 %, and 24.5 %, respectively. (2) Biochar increased the proportion of mineral nitrogen supplied by fertilizer in the mineral nitrogen pool. The application of 7500 kg·ha-1 biochar increased mineral nitrogen by 3.05 %, 3.22 %, and 3.8 %, respectively, compared to the control treatments in the same year. Biochar promoted the transformation of nitrogen in the 0-40 cm soil layer to three different soil nitrogen pools, especially the organic nitrogen pool. (3) Biochar significantly improved the soil bacterial community and increased the abundances of N transformation functional genes. The redundancy analysis (RDA) showed that the gdhA mineralization gene was the driving factor of nitrogen fertilizer transformation, contributing 43.6 % of the variance. In summary, the application of 7500 kg·ha-1 of biochar for two consecutive years was conducive to maintaining farmland soil fertility, while its use would not be recommended for more than three consecutive years.


Subject(s)
Charcoal , Fertilizers , Nitrogen , Soil , Fertilizers/analysis , Nitrogen/analysis , China , Soil/chemistry , Agriculture/methods , Zea mays/growth & development , Soil Microbiology
5.
Bioresour Technol ; 412: 131419, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39233180

ABSTRACT

Baffled flow constructed wetland-microbial fuel cell (BFCW-MFC) coupling systems were constructed with baffles embedded in cathode chamber. The performance of BFCW-MFCs operated at different hydraulic retention times (HRTs) was evaluated. At the representative HRT of 48 h, embedding 1 or 2 baffles (i.e., BFCW-MFC1 and BFCW-MFC2) produced 32.9 % (29.5 mW/m3) and 53.2 % (34.0 mW/m3) more power density than control system (22.2 mW/m3), respectively. Comparable organics biodegradation efficiencies were observed in BFCW-MFCs at the same HRTs. BFCW-MFC1 and BFCW-MFC2 had higher ammonium and total nitrogen removal efficiency. All systems had decreased nitrogen removal performance as shortening HRT from 72 to 12 h. Multiple nitrogen removal processes were involved, including ammonium oxidation, anammox, and heterotrophic and autotrophic denitrification. The predominant bacteria on electrodes were identified for analyzing bioelectricity generation and wastewater treatment processes. Generally, simultaneous wastewater treatment and bioelectricity generation were obtained in BFCW-MFCs, and embedding 1 or 2 baffles was preferable.


Subject(s)
Bioelectric Energy Sources , Nitrogen , Wastewater , Water Purification , Wetlands , Wastewater/chemistry , Water Purification/methods , Biodegradation, Environmental , Electrodes , Electricity , Ammonium Compounds/metabolism , Bacteria/metabolism , Waste Disposal, Fluid/methods , Denitrification
6.
Sci Total Environ ; 954: 176467, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326764

ABSTRACT

Riparian zones play a crucial role in reducing nitrate pollution in both terrestrial and aquatic environments. Complex deposition action and dynamic hydrological processes will change the grain size distribution of riparian sediments, affect the residence time of substances, and have a cascade effect on the biogeochemical process of nitrate nitrogen (NO3--N). However, simultaneous studies on NO3--N transformation and the potential drivers in riparian zones are still lacking, especially neglecting the effect of sediment grain size (SGS). To fill this knowledge gap, we first systematically identified and quantified NO3--N biogeochemical processes in the riparian zone by integrating molecular biotechnology, 15N stable isotope tracing, and microcosmic incubation experiments. We then evaluated the combined effects of environmental variables (including pH, dissolved organic carbon (DOC), oxidation reduction potential, SGS, etc.) on NO3--N transformation through Random Forest and Structural Equation Models. The results demonstrated that NO3--N underwent five microbial-mediated processes, with denitrification, dissimilatory nitrate reduction to ammonium (DNRA) dominated the NO3--N attenuation (69.4 % and 20.1 %, respectively), followed by anaerobic ammonia oxidation (anammox) and nitrate-dependent ferric oxidation (NDFO) (8.4 % and 2.1 %, respectively), while nitrification dominated the NO3--N production. SGS emerged as the most critical factor influencing NO3--N transformation (24.96 %, p < 0.01), followed by functional genes (nirS, nrfA) abundance, DOC, and ammonia concentrations (14.12 %, 16.40 %, 13.08 %, p < 0.01). SGS influenced NO3--N transformation by regulating microbial abundance and nutrient concentrations. RF predicted that a 5 % increase in the proportion of fine grains (diameter < 50 µm) may increase the NO3--N transformation rate by 3.8 %. This work highlights the significance of integrating machine learning and geochemical analysis for a comprehensive understanding of nitrate biogeochemical processes in riparian zones, contributing valuable references for future nitrogen management strategies.

7.
Water Res ; 267: 122460, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39306929

ABSTRACT

Although sediment dredging is a widely employed water management and restoration technique for the removal of internal nitrogen (N), the long-term effects of dredging on N transformation in dredged rivers remain largely undetermined. In this study, we investigated the effects of dredging on N transformation processes spanning three years at ten sites in the purple-soil watershed within the middle reaches of the Fu River Basin. We combined isotopic and molecular techniques to provide novel insights into the interactions associated with microbial utilization capacities between sediment and river water before, during, and after dredging. Initially, dredging was found to significantly reduce the total nitrogen content by approximately 75 %, although over time, there was a slight increase in concentrations. Secondly, significant reductions in microbial richness and diversity were detected in both river water and sediment, with 39 classes reduced, 12 new classes emerging, and an increase in archaea, reshaping the microbial community. Lastly, dredging was found to promote a significant shift in functional contributions, with increases in the abundance of key enzyme activities (1.7.5.1 and 1.7.2.5) and denitrification genes (nirK, norB, and nosZ). This enhancement notably promoted denitrification and dissimilatory nitrate reduction to ammonium (DNRA), accompanied by significant environmental changes in sediment and river water. These changes facilitated the removal of nitrates in the Xiangshuitan watershed. Our study overcomes the limitations associated with watershed and microenvironment scales, providing insights into the mechanisms where by dredging activities influence the interplay between external and internal N transformations.

8.
Bioresour Technol ; 413: 131507, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303947

ABSTRACT

Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.

9.
Water Res ; 267: 122472, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39305525

ABSTRACT

This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.

10.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1725-1734, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235032

ABSTRACT

Climate warming and drying has led to a sharp increase in nitrogen (N) emissions from the boreal peatland soils, but the underlying microbial-mediated mechanism is still unclear. We reviewed the responses of soil N transformation and emission in alpine peatland to temperature increases and water table changes, the interaction between soil anaerobic ammonia oxidation (Anammox) and NO3- dissimilatory reduction processes, and soil N2O production pathways and their contributions. There are several knowledge gaps. First, the amount of N loss in peatlands in alpine areas is seriously underestimated because most studies focused only on soil N2O emissions and ignored the release of N2. Second, the contribution of Anammox process to N2 emissions from peatlands is not quantified. Third, there is a lack of quantification of the relative contributions of Anammox, bacterial denitrification, and fungal co-denitrification processes to N2 loss. Finally, the decoupling mechanism of Anammox and NO3- reduction processes under a warming and drying climate scenario is not clear. Considering aforementioned shortages in previous studies, we proposed the directions and contents for future research. Through building an experimental platform with field warming and water level controlling, combining stable isotope, molecular biology, and metagenomics technology, the magnitude, composition ratio and main controlling factors of N emissions (N2O, NO, and N2) in boreal peatlands should be systematically investigated. The interaction among the main N loss processes in soils as well as the relative contributions of nitrification, anaerobic ammonia oxidation, and denitrification to N2O and N2 productions should be investigated and quantified. Furthermore, the sensitive microbial groups and the coupling between soil N transformations and microbial community succession should be clarified to reveal the microbiological mechanism underlying the responses of soil N turnover process to climate warming and drying.


Subject(s)
Climate Change , Global Warming , Nitrogen , Soil Microbiology , Soil , Soil/chemistry , Nitrogen/analysis , Nitrogen/metabolism , Ecosystem , Droughts , Nitrous Oxide/analysis , Nitrous Oxide/metabolism
11.
J Environ Manage ; 369: 122280, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39226813

ABSTRACT

Soil nitrogen addition induces the generation and proliferation of some bacterial virulence, yet the interactive mechanisms between the two remain unclear. Here we investigated the variation of virulence genes (VGs) abundance during soil nitrogen transformation, and explored the biological mechanism and key pathways involved in the regulation of VGs by nitrogen transformation. The results showed that the diversity and abundance of virulence genes in soil under high nitrogen input (100 mg/kg) were markedly higher than those under low nitrogen input (50 mg/kg), suggesting a trade-off between the prevalence of virulence genes and nitrogen metabolism. Nutritional/metabolic factor, regulation, immune modulation and motility were the dominant virulence types. Linear regression analysis showed that soil nitrogen mineralization and nitrification rate were closely correlated with the abundance of virulence genes, mainly involving adherence, nutritional/metabolic factors and immune modulation (p < 0.05). Structural equations indicated that microbial community succession associated with nitrogen transformation largely contributed to the changes in VGs abundance. Metagenomic analysis revealed that major virulence genes pilE, pchB, and galE were regulated by nitrogen-functional genes gdh, ureC, and amoC, implying that microbial nitrogen transformation influences immune modulation, nutritional/metabolic factors, and adherence-like virulence. The meta-transcriptome reiterated their co-regulation, and the key pathway may be glutamate/urea> α-ketoglutarate/ammonia > pyruvate/amino acid. The outcome provides strong evidence on the linkage between microbial nitrogen transformation and pathogenic virulence factors development in the soil environment, which will aid in the effective suppression of the prevalence of soil pathogenic virulence.


Subject(s)
Nitrogen , Soil Microbiology , Soil , Nitrogen/metabolism , Virulence , Soil/chemistry
12.
Waste Manag ; 189: 1-10, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39137581

ABSTRACT

The nitrogen transformation during sludge pyrolysis is affected by the dewater conditioner. However, the comparative analysis of the conditioner under identical pyrolysis conditions has been previously absent. In this study, Ca-, Fe- and Al-based conditioners were selected as the representatives. A comprehensive evaluation considering the cost of the conditioners and the product characteristics was conducted. Additionally, the in-situ fixation mechanism of the conditioner on nitrogen-containing gas was concurrently revealed. Among the six conditioners, CaO and AlCl3 were identified as the top performers, ranking first and second, respectively. Furthermore, Fe/Ca-based conditioners reduced NH3 and HCN release by 1.5 âˆ¼ 5.53 % and 0 âˆ¼ 1.55 %, respectively, by facilitating the conversion of amine-N to a more stable form in condensable fraction. Fe promoted volatile amine-N cyclization, while Ca encouraged its dehydrogenation. Both Fe/Ca-based conditioners increased 7.5 âˆ¼ 14.8 % nitrogen retention in char, by inhibiting the decomposition of protein-N. Al-based conditioners had little effect on NH3 and HCN, but contributed to 2.3 âˆ¼ 2.8 % production of stabilized nitrogen in char. The introduction of Cl in Fe/Ca/Al chloride conditioners would promote the decomposition of inorganic ammonium salts to produce NH3 at 30 âˆ¼ 185 °C. And Cl also reacted with volatiles through electrophilic substitution reaction, leading to the formation of halogenated hydrocarbons in condensable fraction and the release of more NH3, HCN, and HNCO at 30 âˆ¼ 465 °C. The findings of this study provide a detailed comparative analysis of various conditioners under uniform conditions and reveal the in-situ fixation mechanism of nitrogen-containing gas. This will provide guidance for the sludge conditioning-dewatering-drying integrated treatment and disposal.


Subject(s)
Pyrolysis , Sewage , Sewage/chemistry , Nitrogen Oxides/analysis , Nitrogen/analysis , Ammonia/chemistry , Ammonia/analysis , Waste Disposal, Fluid/methods , Air Pollutants/analysis
13.
Huan Jing Ke Xue ; 45(8): 4756-4765, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168693

ABSTRACT

In the agricultural lands of China, polyethylene is the main component of microplastics (MPs), with characteristics such as small size, wide distribution, easy accumulation, and difficult degradation. Therefore, it may have an impact on the elemental cycling process of the soil. On the basis of reviewing the key literatures in the past few years, this study systematically analyzed and summarized the key factors and processes of the polyethylene microplastics (PE-MPs) affecting soil nitrogen transformation. On the one hand, PE-MPs directly affected the activities of microorganisms and key enzymes related to soil nitrogen transformation by enriching microorganisms, selecting colonized microbial populations, and releasing additives. On the other hand, PE-MPs had indirect impacts on the activities of microorganisms and key enzymes related to soil nitrogen transformation by affecting soil physicochemical properties of soil and changing the microenvironment for microbial growth. Moreover, phthalates, an important additive of the MPs, may be the key factor affecting soil nitrogen transformation in the short-term. Finally, we posed key scientific issues that should be further studied in order to provide scientific support for nitrogen nutrition regulation and ecological risk assessment of soils contaminated by PE-MPs.


Subject(s)
Microplastics , Nitrogen , Polyethylene , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Soil Microbiology , China
14.
J Hazard Mater ; 478: 135506, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39151360

ABSTRACT

Nitrogen addition is commonly used to remediate total petroleum hydrocarbons (TPH) in petroleum-contaminated soils. However, acceptable exogenous nitrogen dosages and their utilization efficiency for the degradation of hydrocarbons in oil-polluted soils are not well understood. This study compared the hydrocarbon bioremediation capacity by applying different doses of NH4Cl as a stimulant in soils contaminated with TPH at 8553 and 17090 mg/kg. The results showed acceptable exogenous nitrogen levels ranging from 60 to 360 mg N/kg soil, and the optimal nitrogen dosage for TPH remediation was 136 mg N/kg in soils with different TPH concentrations. The nitrogen availability efficiency (NAE) and nitrogen polarization factor availability (NPFA) in the 136 mg N/kg addition treatments were 6.69 and 20.47 mg/mg in 8533 mg/kg TPH-polluted soil, and 6.03 and 31.11 mg/mg in 17090 mg/kg TPH-polluted soil, respectively. Metagenomic analysis revealed that the application of 136 mg/kg nitrogen facilitated ammonia oxidation and nitrite reduction to nitric oxide, and induced soil microorganisms to undergo regulatory or adaptive changes in energy supply and metabolic state, which could aid in restoring the ecological functions of petroleum-contaminated soils. These findings underscore that 136 mg/kg of nitrogen dosage application is optimal for remediation of petroleum-contaminated soils irrespective of the TPH concentrations. This exogenous nitrogen application dosage for TPH remediation aligns with the nitrogen requirements for crop growth in agriculture.


Subject(s)
Biodegradation, Environmental , Nitrogen , Petroleum , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Petroleum/metabolism , Nitrogen/metabolism , Hydrocarbons/metabolism , Metagenomics
15.
Chemosphere ; 363: 142938, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059640

ABSTRACT

The nitrogen cycle plays a vital role in maintaining ecological health and biodiversity. In aquatic systems, nitrogen transformation genes significantly contribute to biological nitrogen cycling. Although the function of these genes is known to be influenced by environmental factors, there is limited research exploring the relationship between nitrogen transformation genes and environmental factors. Therefore, the correlations, between nitrogen transformation genes and environmental factors, were investigated at the estuaries of Chaohu lake (China) in different seasons. The results showed that the values of temperature, pH, organic compounds, nitrogen, and dissolved oxygen were higher in dry season, whereas the abundance of the genes was lower in dry season. In addition, the abundance of the anaerobic ammoxidation gene was much lower than the nitrification gene and denitrification gene. The results indicated that biological nitrification and denitrification were the primary mechanisms for nitrogen removal at estuaries in different seasons, and the reduction of nitric oxide may be a limiting step in the denitrification process. The Co-occurrence Network and Mantel test indicated that, during the dry season, the temperature was the primary driver of ammonification and nitrification functions, the NO3- and NO2- were the primary drivers of denitrification, and the total nitrogen (TN) and NH4+ were the main drivers of anaerobic ammonia oxidation. During the wet season, the dissolved oxygen was the primary driver of ammonification and nitrification functions, the chemical oxygen demand was the primary driver of denitrification, and the TN was the main driver of anaerobic ammonia oxidation. This study provides valuable insights into nitrogen cycling in surface water, contributing to a better understanding of this important process.


Subject(s)
Denitrification , Estuaries , Nitrification , Nitrogen Cycle , Nitrogen , Seasons , Nitrogen/metabolism , China , Lakes/chemistry , Ammonia/metabolism , Water Pollutants, Chemical/analysis
16.
Water Res ; 261: 122045, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38972236

ABSTRACT

Nutrient pollution is pervasive in many urban rivers, while restoration measures that reduce nutrient loading but fail to improve biological communities often lack effectiveness due to the indispensable role of biota, especially multi-taxa, in enhancing ecosystem stability and function. The investigation of the response patterns of multi-taxa to the nutrient loading in urban rivers is important for the recovery of biota structure and thus ecosystem function. However, little is known about the response patterns of multi-taxa and their impact on ecosystem structure and function in urban rivers. Here, the study, from the perspective of alternative stable states theory, showed the hysteretic response of both bacterial and micro-eukaryotic communities to nutrient loading based on the field investigation and environmental DNA metabarcoding. Bistability was shown to exist in both bacterial and micro-eukaryotic communities, demonstrating that the response of microbiota to nutrient loading was a regime shifts with hysteresis. Potential analysis then indicated that the increased nutrient loading drove regime shifts in the bacterial community and the micro-eukaryotic community towards a state dominated by anaerobic bacteria and benthic Bacillariophyta, respectively. High nutrient loading was found to reduce the relative abundance of metazoan, but increase that of eukaryotic algae, which made the trophic pyramid top-lighter and bottom-heavier, probably exacerbating the degradation of ecosystem function. It should be noted that, in response to the reduced nutrient loading, the recovery threshold of micro-eukaryotic communities (nutrient loading = ∼0.5) was lower than that of bacterial communities (nutrient loading = ∼1.2), demonstrating longer hysteresis of micro-eukaryotic communities. In addition, the markedly positive correlation between the status of microbial communities and N-related enzyme activities suggested the recovery of microbial communities probably will benefit the improvement of N-cycling functionality. The obtained results provide a deep insight into the collapse and recovery trajectories of multi-trophic microbiota to the nutrient loading gradient and their impact on the N transformation potential, therefore benefiting the restoration and management of urban rivers.


Subject(s)
Bacteria , Rivers , Nutrients , Ecosystem , Eukaryota , Microbiota
17.
Sci Total Environ ; 942: 173771, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38851351

ABSTRACT

The impact of microplastics and their additives on soil nutrient cycling, particularly through microbial mechanisms, remains underexplored. This study investigated the effects of polyethylene microplastics, polyethylene resin, and plastic additives on soil nitrogen content, physicochemical properties, nitrogen cycling functional genes, microbial composition, and nitrogen transformation rates. Results showed that all amendments increased total nitrogen but decreased dissolved total nitrogen. Polyethylene microplastics and additives increased dissolved organic nitrogen, while polyethylene resin reduced it and exhibited higher microbial biomass. Amendments reduced or did not change inorganic nitrogen levels, with additives showing the lowest values. Polyethylene resin favored microbial nitrogen immobilization, while additives were more inhibitory. Amendment type and content significantly interacted with nitrogen cycling genes and microbial composition. Distinct functional microbial biomarkers and network structures were identified for different amendments. Polyethylene microplastics had higher gross ammonification, nitrification, and immobilization rates, followed by polyethylene resin and additives. Nitrogen transformation was driven by multiple functional genes, with Proteobacteria playing a significant role. Soil physicochemical properties affected nitrogen content through transformation rates, with C/N ratio having an indirect effect and water holding capacity directly impacting it. In summary, plastic additives, compared to polyethylene microplastics and resin, are less conducive to nitrogen degradation and microbial immobilization, exert significant effects on microbial community structure, inhibit transformation rates, and ultimately impact nitrogen cycling.


Subject(s)
Microplastics , Nitrogen Cycle , Nitrogen , Polyethylene , Soil Microbiology , Soil Pollutants , Soil , Soil/chemistry , Microbial Interactions
18.
Environ Sci Pollut Res Int ; 31(29): 42144-42159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862800

ABSTRACT

As a widely available, low-cost agricultural byproduct, bagasse is a potential solid carbon source and provides microbial attachment as a biofilm carrier. In this study, the effects of bagasse as a carbon source on biofloc formation, water quality, microbial community structure, and nitrogen conversion in a shrimp culture system were explored, and the performance of bagasse bioflocs was assessed. No bagasse was added to the control group (CK), and three bagasse addition groups were set up, with the floc content of the water maintained at 5 mL/L (BF5 group), 10 mL/L (BF10 group), and 15 mL/L (BF15 group). The results showed that bagasse bioflocs formed in the fourth week when bagasse was placed in the culture water, and the surface of bagasse was covered with thick biofilm at that time. The DOC content of the BF15 group was significantly greater than that of the CK group, from 30.31 to 105.06% (P < 0.05), and the DOC increased with increasing bagasse biofloc content. The BF group rapidly converted TAN to NO2--N and then to NO3--N because the accumulation of nitrite nitrogen in the BF15 group occurred 1 week earlier than in the other groups; at the 8th week, the nitrite nitrogen conversion rate of each BF group was close to 100%, which was significantly greater than that of the CK group (P < 0.05). The relative abundances of genes encoding microbial glutamate dehydrogenase and glutamate synthase increased in the bagasse biofloc groups (P < 0.05). The relative abundances of genes from Rhodobacterales and Hyphomicrobiales in each group were greater, but bagasse bioflocs increased the proportion of Hyphomicrobiale. In summary, adding bagasse to the shrimp culture system can form a biofloc system, resulting in the formation of a rich bacterial biofilm on its surface. Bagasse addition not only affects the composition of microbial communities but also accelerates the nitrification process in water. As a result, ammonia and nitrite are converted into nitrate, which is essential for maintaining the stability of the ecosystem balance in aquaculture water.


Subject(s)
Carbon , Cellulose , Water Quality , Animals , Cellulose/metabolism , Biofilms , Microbiota , Nitrogen , Aquaculture
19.
Sci Total Environ ; 946: 174234, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38917901

ABSTRACT

The high concentration of organic waste liquid obtained from the mini flush pipeline discharge technology based on source separation has the potential for fertilizer utilization. However, there are concerns about the risk of secondary pollution. This study proposes the idea of aeration treatment for regenerated liquid fertilizers to induce beneficial changes in their material composition and properties. Initially, this study compares the characteristic changes in nitrogen transformation of liquid fertilizer through aeration treatment. Subsequently, it examines the effects of different types of liquid fertilizers on soil properties, plant physiology, and soil microbial communities. Finally, we elucidate the flow and distribution of nitrogen in soil, plants, and nitrogen-containing gas emissions in agricultural ecosystems through material flow accounting. The study found that aeration treatment can reduce the ammonia nitrogen ratio while increasing the proportions of nitrite nitrogen and nitrate nitrogen. The regenerated liquid fertilizer through aeration treatment not only significantly increased the chlorophyll, protein, and polysaccharide content of vegetable leaves (P < 0.05) but also reduced nitrate accumulation. Moreover, it can reduce the risk of soil nitrate nitrogen leaching and increase the diversity of soil bacterial communities, enhancing the ecological functions of bacteria involved in carbon and nitrogen cycling. Material flow accounting indicated that aeration treatment for liquid fertilizer could reduce gaseous nitrogen loss by 50.0 %, improve the nitrogen utilization efficiency of vegetables by 95.5 %, and enhance soil nitrogen retention by 11.4 %. Overall, the results show that aeration treatment can improve the agricultural utilization of liquid fertilizer and reduce the risk of secondary pollution, providing preliminary decision-making support for optimizing resource treatment strategies for mini-flush toilet fecal waste to realize the agricultural cycle.


Subject(s)
Agriculture , Fertilizers , Nitrogen , Agriculture/methods , Nitrogen/analysis , Soil Microbiology , Soil/chemistry
20.
Environ Res ; 260: 119508, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38945511

ABSTRACT

Cyanobacterial blooms (CBs) and concomitant water quality issues in oligotrophic/mesotrophic waters have been recently reported, challenging the conventional understanding that CBs are primarily caused by eutrophication. To elucidate the underlying mechanism of CBs in nutrition-deficient waters, the changes in Chlorophyll a (Chl-a), cyanobacterial-bacterial community composition, and certain microbial function in Qingcaosha Reservoir, the global largest tidal estuary storage reservoir, were analyzed systematically and comprehensively after its pilot run (2011-2019) in this study. Although the water quality was improved and stabilized, more frequent occurrences of bloom level of Chl-a (>20 µg L-1) in warm seasons were observed during recent years. The meteorological changes (CO2, sunshine duration, radiation, precipitation, evaporation, and relative humidity), water quality variations (pH, total organic carbon content, dissolved oxygen, and turbidity), accumulated sediments as an endogenous source, as well as unique estuarine conditions collectively facilitated picocyanobacterial-bacterial coexistence and community functional changes in this reservoir. A stable and tight co-occurrence pattern was established between dominant cyanobacteria (Synechococcus, Cyanobium, Planktothrix, Chroococcidiopsis, and Prochlorothrix) and certain heterotrophic bacteria (Proteobacteria, Actinobacteria, and Bacteroidetes), which contributed to the remineralization of organic matter for cyanobacteria utilization. The relative abundance of chemoorganoheterotrophs and bacteria related to nitrogen transformation (Paracoccus, Rhodoplanes, Nitrosomonas, and Zoogloea) increased, promoting the emergence of CBs in nutrient-limited conditions through enhanced nutrient recycling. In environments with limited nutrients, the interaction between photosynthetic autotrophic microorganisms and heterotrophic bacteria appears to be non-competitive. Instead, they adopt complementary roles within their ecological niche over long-term succession, mutually benefiting from this association. This long-term study confirmed that enhanced nutrient cycling, facilitated by cyanobacterial-bacterial symbiosis following long-term succession, could promote CBs in oligotrophic aquatic environments devoid of external nutrient inputs. This study advances understanding of the mechanisms that trigger and sustain CBs under nutritional constraints, contributing to developing more effective mitigation strategies, ensuring water safety, and maintaining ecological balance.


Subject(s)
Cyanobacteria , Eutrophication , Cyanobacteria/growth & development , Chlorophyll A/analysis , China , Water Quality , Nutrients/analysis
SELECTION OF CITATIONS
SEARCH DETAIL