Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters











Publication year range
1.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998506

ABSTRACT

This research aimed to analyze the impact of two different non-Saccharomyces yeast species on the aromatic profile of red wines made from the cv. Babic (Vitis vinifera L.) red grape variety. The grapes were obtained from two positions in the Middle and South of Dalmatia. This study compared a control treatment with the Saccharomyces cerevisiae (Sc) strain as a type of sequential inoculation treatment with Lachancea thermotolerans (Lt x Sc) and Torulaspora delbrueckii (Td x Sc). The focus was on the basic wine parameters and volatile aromatic compound concentrations determined using the SPME-Arrow-GC/MS method. The results revealed significant differences in cis-linalool oxide, geraniol, neric acid, and nerol, which contribute to the sensory profile with floral and rose-like aromas; some ethyl esters, such as ethyl furoate, ethyl hexanoate, ethyl lactate, ethyl 2-hydroxy-3-methylbutanoate, ethyl 3-hydroxy butanoate, diethyl glutarate, and diethyl succinate, contribute to the aromatic profile with fruity, buttery, overripe, or aging aromas. A sensory evaluation of wines confirmed that Td x Sc treatments exhibited particularly positive aromatic properties together with a more intense fullness, harmony, aftertaste, and overall impression.

2.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890877

ABSTRACT

This study investigates innovative approaches to improve the quality and aroma characteristics of Muscat Hamburg wine production by substituting the conventional Saccharomyces cerevisiae yeast with an efficient fermentation strain of Schizosaccharomyces pombe. The typical use of S. cerevisiae in Muscat Hamburg wine often leads to uniformity and prolonged processing times, requiring subsequent malolactic fermentation to degrade excessive malic acid. The study advocates for the replacement of S. cerevisiae with a specific S. pombe strain, Sp-410, isolated from the fermented grains of sauce-flavor Baijiu, a Chinese spirit. Muscat Hamburg wine fermented with the S. pombe strain demonstrates decreased malic acid levels, offering a potential alternative to malolactic fermentation. However, exclusive S. pombe fermentation may result in an overproduction of acetic acid metabolites, leading to a monotonous taste. In response, the study proposes a mixed fermentation approach, combining the S. pombe strain with a Saccharomyces uvarum strain and a non-Saccharomyces yeast, Torulaspora delbrueckii. The optimized mixed fermentation strategies (M:SP+TD and M60SP+TD) involve specific proportions and intervals of inoculation, aiming to enhance the quality and aroma complexity of Muscat Hamburg wine. In conclusion, this research contributes to advancing the production of high-quality Muscat Hamburg wines, utilizing S. pombe as the primary yeast strain and implementing mixed fermentation methodologies.

3.
Talanta ; 277: 126340, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38870756

ABSTRACT

Understanding the contribution of new natural sources of antioxidant compounds to the stability of wines is of great interest in a context of reduction of sulfites. Here, we investigated the antioxidant potential of selected inactivated non-Saccharomyces yeast (INSY) along with related chemical fingerprints, using combined untargeted UHPLC-Q-ToF MS and DPPH analyses. 4 INSY species were compared to a reference inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity. Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170 % to +360 % compared to the corresponding classical production process. The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF-MS clearly grouped INSY by species, independently of the production process. One INSY exhibited equivalent antioxidant capacity to the control ISY, but with a GSH concentration four times lower (4.73 ± 0.09 mg/g against 20.95 ± 0.34 mg/g, respectively). 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds. These results point out that, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fractions and other more reactive compounds must be considered, which opens an avenue for the selection new species with great enological potential.


Subject(s)
Antioxidants , Metabolome , Saccharomyces cerevisiae , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/metabolism , Saccharomyces cerevisiae/metabolism , Chromatography, High Pressure Liquid , Biphenyl Compounds/chemistry , Picrates/antagonists & inhibitors , Glutathione/metabolism , Glutathione/analysis
4.
J Agric Food Chem ; 72(20): 11606-11616, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722802

ABSTRACT

In this work, three MP extracts obtained from Torulaspora delbrueckii were added to red wine, and the changes in phenolic composition, color, and astringency were evaluated by HPLC-DAD-ESI-MS, tristimulus colorimetry, and sensory analysis, respectively. The MP extracts modified wine phenolic composition differently depending on the type of MP. Moreover, two MP extracts were able to reduce wine astringency. The fact that the MP-treated wines showed an increased flavanol content suggests the formation of MP-flavanol aggregates that remain in solution. Furthermore, the formation of these aggregates may hinder the interaction of flavanols with salivary proteins in the mouth. The effect of these MPs might be associated with their larger size, which could influence their ability to bind flavanols and salivary proteins. However, one of the astringent-modulating MPs also produced a loss of color, highlighting the importance of assessing the overall impact of MPs on the organoleptic properties of wine.


Subject(s)
Taste , Torulaspora , Wine , Wine/analysis , Humans , Torulaspora/metabolism , Torulaspora/chemistry , Phenols/metabolism , Phenols/chemistry , Color , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Chromatography, High Pressure Liquid , Female , Male , Membrane Glycoproteins
5.
Food Res Int ; 187: 114366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763646

ABSTRACT

In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.


Subject(s)
Beer , Fermentation , Fermented Foods , Gas Chromatography-Mass Spectrometry , Odorants , Solid Phase Microextraction , Volatile Organic Compounds , Yeasts , Beer/analysis , Beer/microbiology , Odorants/analysis , Volatile Organic Compounds/analysis , Fermented Foods/microbiology , Fermented Foods/analysis , Yeasts/isolation & purification , Yeasts/metabolism , Food Microbiology
6.
Heliyon ; 10(5): e26547, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468924

ABSTRACT

Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.

7.
Food Chem ; 438: 137956, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37989022

ABSTRACT

The development of blueberry wine provides an alternative method for maintaining the nutritional value and extending the shelf life of blueberries. However, anthocyanin loss and off-flavor compound generation during fermentation impair blueberry wine color and quality. Hydroxycinnamate decarboxylase from yeast can catalyze the conversion of hydroxycinnamic acids to vinylphenols, which later may condense with anthocyanins to form more stable vinylphenolic pyranoanthocyanins. In this study, 10 non-Saccharomyces yeasts from Daqu that showed hydroxycinnamate decarboxylase activity were screened. Among the 10 strains, Wickerhamomyces anomalus Y5 showed the highest consumption (34.59%) of the total tested phenolic acids and almost no H2S production. Furthermore, Y5 seemed to produce four vinylphenol pyranoanthocyanins (cyanidin-3-O-galactoside/glucoside-4-vinylcatechol, cyanidin-3-O-galactoside/glucoside-4-vinylsyringol, malvidin-4-vinylguaiacol, and malvidin-4-vinylcatechol) during blueberry wine fermentation, which may improve the color stability of blueberry wine. These findings provide new insights for improving the quality of blueberry wine using non-Saccharomyces yeasts.


Subject(s)
Blueberry Plants , Carboxy-Lyases , Wine , Wine/analysis , Anthocyanins/analysis , Yeasts , Glucosides , Galactosides
8.
Food Chem X ; 20: 100930, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144769

ABSTRACT

Hanseniaspora uvarum is a prevalent yeast species in vineyards. However, its application in grape wine fermentation remains limited. This study used culture-dependent and -independent approaches to investigate the dynamics of H. uvarum during the spontaneous fermentation of Cabernet Sauvignon grapes. The results revealed that H. uvarum constituted 77.49 % of the non-Saccharomyces yeast population during fermentation. An indigenous strain, QTX-C10, was isolated from the 148 H. uvarum strains using a multistep screening strategy. The 1:1 co-inoculation of QTX-C10 with Saccharomyces cerevisiae proved to be an optimal strategy for mixed fermentation, resulting in a 48.54 %-59.55 % increase in ethyl esters in Cabernet Sauvignon wine and a 96.94 %-110.92 % increase in Chardonnay wine. Furthermore, this approach reduced the acetic acid levels by 12.50 %-17.07 % for Cabernet Sauvignon wine and 10.81 %-17.78 % for Chardonnay wine. Additionally, increased ethyl ester content may enhance the tropical fruit flavor of Cabernet Sauvignon wines.

9.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-37777839

ABSTRACT

Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.


Subject(s)
Probiotics , Saccharomyces cerevisiae , Saccharomyces cerevisiae/physiology , Antioxidants
10.
Foods ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37761101

ABSTRACT

One approach towards maintaining healthy microbiota in the human gastrointestinal tract is through the consumption of probiotics. Until now, the majority of probiotic research has focused on probiotic bacteria, but over the last few years more and more studies have demonstrated the probiotic properties of yeast, and also of species besides the well-studied Saccharomyces cerevisiae var. boulardii. Probiotic strains have to present the ability to survive in harsh conditions of the host body, like the digestive tract. Must fermentation might be an example of a similar harsh environment. In the presented study, we examined the probiotic potential of 44 yeast strains isolated from Polish wines. The tested isolates belonged to six species: Hanseniaspora uvarum, Pichia kluyveri, Metschnikowia pulcherrima, Metschnikowia ziziphicola, Saccharomyces cerevisiae and Starmerella bacillaris. The tested strains were subjected to an assessment of probiotic properties, their safety and their other properties, such as enzymatic activity or antioxidant properties, in order to assess their potential usefulness as probiotic yeast candidates. Within the most promising strains were representatives of three species: H. uvarum, M. pulcherrima and S. cerevisiae. H. uvarum strains 15 and 16, as well as S. cerevisiae strain 37, showed, among other features, survivability in gastrointestinal tract conditions exceeding 100%, high hydrophobicity and autoaggregation, had no hemolytic activity and did not produce biogenic amines. The obtained results show that Polish wines might be a source of potential probiotic yeast candidates with perspectives for further research.

11.
Molecules ; 28(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570860

ABSTRACT

The cultivation and enrichment of different soils in a vineyard yielded 95 yeast species. Among them, seven strains capable of producing ß-glucosidases were identified using the aescin colorimetric method. One non-Saccharomyces yeast strain was isolated from a plate containing lysine and identified using internal transcription (ITS) as Candida cf. sorbosivorans (C. cf. sorbosivorans), which was named Candida cf. sorbosivorans X1. Additionally, the enzymatic characteristics of the ß-glucosidases produced by this strain were investigated. The ß-glucosidases generated by C. cf. sorbosivorans X1 displayed high enzymatic activity and enzyme-activity retention in a pH range of 3.0 to 5.4 and at temperatures of 30 °C to 35 °C. Using non-targeted metabolomics methods, we investigated the alterations in metabolites during the fermentation of mango juice. The strain C. cf. sorbosivorans X1 demonstrated activity against phenols and terpenes. In the fermented mango juice (X1FMJ), we identified 41 differential metabolites. These included 14 esters, 4 hydrocarbons, 3 aldehydes, 5 ketones, 4 terpenoids, 4 alcohols, 1 aromatic hydrocarbon, 2 amines, 1 acid, and 3 heterocyclic compounds. The metabolic pathways of these differential metabolites were analyzed, revealing four key pathways: tyrosine metabolism, phenylpropanoid biosynthesis, monoterpene biosynthesis, and α-linolenic acid metabolism, which promoted the formation of aroma compounds in the fermented mango juice.

12.
Front Microbiol ; 14: 1202440, 2023.
Article in English | MEDLINE | ID: mdl-37323890

ABSTRACT

Ethanol tolerance is crucial for the oenological yeasts. Rosa roxburghii Tratt, a Rosaceae plant native to China, is rich in nutritional and medicinal ingredients. In this study, ethanol-tolerant non-Saccharomyces yeasts were screened, and their oenological properties were further evaluated. Three ethanol-tolerant yeast strains (designated as C6, F112, and F15), which could tolerate 12% (v/v) ethanol treatment, were isolated from R. roxburghii, and identified as Candida tropicalis, Pichia guilliermondii, and Wickerhamomyces anomalus, respectively. The winemaking condition tolerances of these ethanol-tolerant yeast strains were similar to those of Saccharomyces cerevisiae X16. However, their growth, sugar metabolic performance and sulphureted hydrogen activities, were different. The ß-glucosidase production ability of strain W. anomalus F15 was lower than that of S. cerevisiae X16, and strains of C. tropicalis C6 and P. guilliermondii F112 were similar to S. cerevisiae X16. Electronic sensory properties of the R. roxburghii wines fermented using ethanol-tolerant yeasts together with S. cerevisiae showed no significant differences. However, the mixed inoculation of the ethanol-tolerant yeast strains with S. cerevisiae could regulate the volatile aroma characteristics of the fermented R. roxburghii wine, enriching and enhancing the aroma flavor. Therefore, the selected ethanol-tolerant yeasts have the potential for application in the production of unique R. roxburghii wine.

13.
Foods ; 12(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36981088

ABSTRACT

In the present work, the modification of spent coffee grounds (SCG) hydrolysate composition by mixed cultures of a non-Saccharomyces yeast, Lachancea thermotolerans, and a lactic acid bacterium, Lactiplantibacillus plantarum, as well as their interactions, were evaluated. It was found that L. plantarum inhibited the growth and survival of L. thermotolerans as compared with that in the yeast alone. On the other hand, the growth and survival of L. plantarum was slowed in sequential fermentation, but not in co-culture. Compared with co-culture, higher ethanol content, less residual sugars, and less acetic and succinic acids were found in sequential fermentation. In addition, lower amounts of caffeine and phenolic acids (e.g., ferulic, caffeic, and p-coumaric acids) were obtained in mixed (co- and sequential) cultures with corresponding levels of volatile phenols relative to the yeast monoculture. Moreover, co-culturing resulted in the highest contents of total alcohols (ethanol excluded) and total esters. Therefore, mixed culturing of L. plantarum and L. thermotolerans presented positive effects on the chemical constituents of fermented SCG hydrolysates, which might be a new alternative approach to valorizing the SCG into novel alcoholic drinks with different ethanol and flavor constituents.

14.
J Fungi (Basel) ; 9(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36836280

ABSTRACT

This research demonstrated an excellent potential approach for utilizing Miang fermentation broth (MF-broth), a liquid residual byproduct from the Miang fermentation process as a health-targeted beverage. One hundred and twenty yeast strains isolated from Miang samples were screened for their potential to ferment MF-broth and four isolates, P2, P3, P7 and P9 were selected, based on the characteristics of low alcoholic production, probiotic properties, and tannin tolerance. Based on a D1/D2 rDNA sequence analysis, P2 and P7 were identified to be Wikerhamomyces anomalus, while P3 and P9 were Cyberlindnera rhodanensis. Based on the production of unique volatile organic compounds (VOCs), W. anomalus P2 and C. rhodanensis P3 were selected for evaluation of MF-broth fermentation via the single culture fermentation (SF) and co-fermentation (CF) in combination with Saccharomyces cerevisiae TISTR 5088. All selected yeasts showed a capability for growth with 6 to 7 log CFU/mL and the average pH value range of 3.91-4.09. The ethanol content of the fermented MF-broth ranged between 11.56 ± 0.00 and 24.91 ± 0.01 g/L after 120 h fermentation, which is categorized as a low alcoholic beverage. Acetic, citric, glucuronic, lactic, succinic, oxalic and gallic acids slightly increased from initial levels in MF-broth, whereas the bioactive compounds and antioxidant activity were retained. The fermented MF-broth showed distinct VOCs profiles between the yeast groups. High titer of isoamyl alcohol was found in all treatments fermented with S. cerevisiae TISTR 5088 and W. anomalus P2. Meanwhile, C. rhodanensis P3 fermented products showed a higher quantity of ester groups, ethyl acetate and isoamyl acetate in both SF and CF. The results of this study confirmed the high possibilities of utilizing MF-broth residual byproduct in for development of health-targeted beverages using the selected non-Saccharomyces yeast.

15.
Foods ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36766182

ABSTRACT

This study explored the effect of the combination of Saccharomyces yeast, non-Saccharomyces yeast (Pichia kudriavzevii), and Lactiplantibacillus plantarum during cider fermentation on physicochemical properties, antioxidant activities, flavor and aroma compounds, as well as sensory qualities. Ciders fermented with the triple mixed-cultures of these three species showed lower acid and alcohol content than those fermented with the single-culture of S. cerevisiae. The antioxidant activities were enhanced by the triple mixed-culture fermentation, giving a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and total antioxidant capacity; specifically, the SPL5 cider showed the highest DPPH radical scavenging rate (77.28%), while the SPL2 gave the highest total antioxidant capacity (39.57 mmol/L). Additionally, the triple mixed-culture fermentation resulted in improved flavor and aroma with a lower acidity (L-malic acid) and higher aroma compounds (Esters), when compared with the single-culture fermented ciders (Saccharomyces cerevisiae); more specifically, the SPL4 cider resulted in the highest total flavor and aroma compounds. In addition, sensory evaluation demonstrated that ciders produced using the triple mixed-cultures gained higher scores than those fermented using the single-culture of S. cerevisiae, giving better floral aroma, fruity flavor, and overall acceptability. Therefore, our results indicated that the triple mixed-cultures (S. cerevisiae, P. kudriavzevii, and L. plantarum) were found to make up some enological shortages of the single S. cerevisiae fermented cider. This study is believed to provide a potential strategy to enhance cider quality and further give a reference for new industrial development protocols for cider fermentation that have better sensory qualities with higher antioxidant properties.

16.
J Food Sci ; 88(3): 1114-1127, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36660881

ABSTRACT

Despite many non-Saccharomyces yeasts being considered spoilage microorganisms, they can increase aroma and flavor diversity in alcoholic beverages. The purpose of this study was to investigate nontraditional inoculation strategies using aroma-producing yeast strains for Kyoho wine fermentation, followed by an instrumental analysis and sensory evaluation. The winemaking process was carried out using Saccharomyces cerevisiae Gr112, Hanseniaspora uvarum Pi235, and Pichia kluyveri Pe114. Multiple inoculation strategies were explored. In instrumental analysis results, mixed culture could promote the formation of esters (5.9-folds) and glycerol (1.3-folds) and reduce the content of ethanol (-0.5% [v/v]) in wine. The sensory analysis results suggested that the three yeast strains sequential inoculation treatment was associated with the aroma attributes "floral," "red fruity," and "tropical fruity." Co-cultivation contributed to an increase in complexity and aromatic intensity, with the three-strain inoculation treatment presenting a more distinctive appearance. PRACTICAL APPLICATION: The inoculation of S. cerevisiae improved the accumulation of volatile acids and esters by inhibiting the growth of non-Saccharomyces yeast strains. Inoculation of H. uvarum and P. kluyveri would effectively solve the defect of excessive content of higher alcohols in wines produced by S. cerevisiae. The suitable inoculation strategy between non-Saccharomyces yeasts could improve the overall quality of Kyoho wine whose starter might be widely used in fermentation industry.


Subject(s)
Wine , Yeast, Dried , Wine/analysis , Saccharomyces cerevisiae , Odorants/analysis , Fermentation , Ethanol
17.
Foods ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359986

ABSTRACT

Global warming poses a threat to winemaking worldwide, especially in dry-warm regions such as Southern Italy. Must fermentation with non-Saccharomyces yeast starter is a possible approach to limit the negative effects of climate change, leading to desirable effects such as an increase in total acidity and/or aroma improvement. The aim of this study was to evaluate the effects of the use of a non-Saccharomyces starter (Lachancea thermotolerans) on the chemical and sensory properties of wines obtained by the the fermentation of two autochthonous Apulian grape cultivars, namely Bombino nero and Minutolo, as compared to the traditional Saccharomyces cerevisiae-driven fermentation. Bombino and Minutolo wines fermented with either Lachancea thermotolerans or Saccharomyces cerevisiae were characterized for their oenological parameters, volatile profiles, and sensory properties. Both chemical and sensory properties were affected by the yeast starter. Inoculation of L. thermotolerans increased sensory complexity, with different floral and sweet-like attributes for both cultivars. Bombino nero, a neutral cultivar, showed a clear effect on wine composition, with both an increase in lactic acid and a change in the volatile profile. On the contrary, the impact of L. thermotolerans was partially masked in Minutolo due to the strong primary aroma background of this highly terpenic cultivar. In this work, we evidenced a notable cultivar × yeast interaction, showing how generalizations of the effects of non-Saccharomyces yeasts on vinification are difficult to achieve, as they show a cultivar-specific outcome.

18.
FEMS Yeast Res ; 22(1)2022 08 30.
Article in English | MEDLINE | ID: mdl-35918186

ABSTRACT

Recently, non-Saccharomyces yeast have become very popular in wine and beer fermentation. Their interesting abilities introduce novel aromatic profiles to the fermented product. In this study, screening of eight non-Saccharomyces yeast (Starmerella bombicola, Lindnera saturnus, Lindnera jadinii, Zygosaccharomyces rouxii, Torulaspora delbrueckii, Pichia kluyveri, Candida pulcherrima, and Saccharomycodes ludwigii) revealed their potential in non-alcoholic beer production. Conditions for non-alcoholic beer production were optimised for all strains tested (except T. delbrueckii) with the best results obtained at temperature 10 to 15 °C for maximum of 10 days. Starmerella bombicola, an important industrial producer of biosurfactants, was used for beer production for the first time and was able to produce non-alcoholic beer even at 20°C after 10 days of fermentation. Aromatic profile of the beer fermented with S. bombicola was neutral with no negative impact on organoleptic properties of the beer. The most interesting organoleptic properties were evaluated in beers fermented with L. jadinii and L. saturnus, which produced banana-flavoured beers with low alcohol content. This work confirmed the suitability of mentioned yeast to produce non-alcoholic beers and could serve as a steppingstone for further investigation.


Subject(s)
Torulaspora , Wine , Beer/analysis , Fermentation , Saccharomycetales , Wine/analysis
19.
Braz J Microbiol ; 53(3): 1515-1531, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35488168

ABSTRACT

The recent realisation regarding the potentiality of the long-neglected non-Saccharomyces yeasts in improving the flavour profile and functionality of alcoholic beverages has pushed researchers to search for such potent strains in many sources. We studied the fungal diversity and the rice beer production capability of the fungal strains isolated from emao-a traditional rice beer starter culture of the Boro community. Fifty distinct colonies were picked from mixed-culture plates, of which ten representative morphotypes were selected for species identification, and simultaneous saccharification and beer fermentation (SSBF) assay. The representative isolates were identified as Hyphopichia burtonii (Hbur-FI38, Hbur-FI44, Hbur-FI47 & Hbur-FI68), Saccharomyces cerevisiae (Scer-FI51), Wickerhamomyces anomalus (Wano-FI52), Candida carpophila (Ccar-FI53), Mucor circinelloides (Mcir-FI60), and Saccharomycopsis malanga (Smal-FI77 and Smal-FI84). The non-Saccharomyces yeast strains Hbur-FI38, Hbur-FI44, Ccar-FI53, and Smal-FI77 showed SSBF capacity on rice substrate producing beer that contained 7-10% (v/v) ethanol. A scaled-up fermentation assay was performed to assess the strain-wise fermentation behaviour in large-scale production. The nutritional, functional, and sensory qualities of the SSBF strain fermented beer were compared to the beer produced by emao. All the strains produced beer with reduced alcohol and energy value while compared to the traditional starter emao. Beer produced by both the strains of H. burtonii stood out with higher ascorbic acid, phenol, and antioxidant property, and improved sensory profile in addition to reduced alcohol and energy value. Such SSBF strains are advantageous over the non-SSBF S. cerevisiae strains as the former can be used for direct beer production from rice substrates.


Subject(s)
Oryza , Saccharomyces cerevisiae , Alcoholic Beverages , Beer/microbiology , Ethanol/analysis , Fermentation
20.
Foods ; 11(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35407125

ABSTRACT

The diversification of beer flavor is becoming increasingly popular, especially in the field of non-alcoholic beers, where sales are growing steadily. While flavor substances of traditional beers can largely be traced back to defined secondary metabolites, the production of non-alcoholic beers with non-Saccharomyces yeasts generates novel fruity flavors, some of which cannot yet be assigned to specific flavor substances. In a recently published study, besides pear, cool mint sweets, and banana-like flavor, distinctive red berry and apple flavors were perceived in a non-alcoholic beer fermented with the yeast strain Cyberlindnera saturnus TUM 247, whose secondary metabolites were to be elucidated in this study. The trials were carried out using response surface methodology to examine the fermentation properties of the yeast strain and to optimize the beer with maximum fruitiness but minimal off-flavors and ethanol content. It turned out that a low pitching rate, a moderate fermentation temperature, and an original gravity of 10.5 °P gave the optimal parameters. Qualitative analysis of the secondary metabolites, in addition to standard analysis for traditional beers, was first performed using headspace-gas chromatography with olfactometry. (E)-ß-damascenone emerged as the decisive substance for the red berry and apple flavor and so this substance was then quantitated. Although (E)-ß-damascenone is a well-known secondary metabolite in beer and this substance is associated with apple or cooked apple- and berry-like flavors, it has not yet been reported as a main flavor component in non-alcoholic beers.

SELECTION OF CITATIONS
SEARCH DETAIL