Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 781: 146646, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33794451

ABSTRACT

Humic acids (HAs) are frequently subjected to pyrolysis and carbonization by wildfires, which could significantly change the sorption of organic contaminants and their environmental risks in natural system. In previous studies, sorption of organic compounds was investigated for HAs pyrolyzed at temperature below 330 °C, but not for HAs pyrolyzed at higher temperature. Therefore, in this study, sorption of 22 typical organic compounds by HAs pyrolyzed at a series of temperatures from 300 to 700 °C was investigated. Sorption of organic compounds was dominated by nonlinear partition for HAs pyrolyzed at low temperature (e.g., 300 and 400 °C) due to the aliphatic and nonporous structures of pyrolyzed humic acids (PyHAs), while it was dominated by pore-filling adsorption for HAs pyrolyzed at high temperature (e.g., 700 °C) due to the aromatic and porous structures of PyHAs. For HAs pyrolyzed at moderate temperature (e.g., 450, 500 and 600 °C), both nonlinear partition and pore-filling adsorption were responsible for the sorption of organic compounds. Meanwhile, the contribution of pore-filling adsorption to overall sorption increased but the contribution of nonlinear partition decreased with the increasing pyrolytic temperature of PyHAs, attributed to the structure change of PyHAs from aliphatic and nonporous to the aromatic and porous. Moreover, with the increasing pyrolytic temperature of PyHAs, sorption affinity of organic compounds increased, while the change of sorption capacity could be explained by the decrease of nonlinear partition and the increase of pore-filling adsorption. The obtained results could help to evaluate the transport, bioavailability and health risks of organic contaminants in the environment.

2.
Sci Total Environ ; 764: 142887, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33127146

ABSTRACT

Nonlinear sorption of nonionic organic compounds (NOCs) by soil organic matter (SOM) is a significant behaviour that affecting their distribution, transport and fate in the environment. Sorption of typical NOCs, including phenols, anilines, nitrobenzenes and polycyclic aromatic hydrocarbons (PAHs) by Lig48, a humus-like substance humificated from lignin (the principal component of plant precursors of SOM), is nonlinear and without desorption hysteresis, and interpreted by nonlinear partition mechanism in this study. The positively linear relationship between sorption capacity and water solubility of NOCs is a distinguish characteristic for their nonlinear partition into Lig48. Moreover, the nonlinear partition capacity of NOCs is mainly dependent on the aromaticity of humus-like substances with a positively linear relationship, while the nonlinear partition affinity is mainly dependent on the polarity of humus-like substances with a negatively linear relationship. Competition between phenols, anilines, nitrobenzenes and PAHs was observed for their nonlinear partition into Lig48. In addition to van der Waals force, specific interactions, i.e., hydrogen-bonding and π-π interactions are responsible for the nonlinear partitioning of NOCs into humus-like substances including Lig48. These novel observations are helpful for understanding the nonlinear sorption of NOCs by SOM and elucidating the migration and transport of NOCs in the environment.

3.
Environ Pollut ; 267: 115563, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254628

ABSTRACT

Nonlinear sorption and isotherm nonlinearity of organic compounds by widely used porous resins such as XAD-7 are commonly interpreted as adsorption due to their large surface area. However, through displacement experiments using saturated 4-nitrophenol as the displacer, we observed that the nonlinear sorption and isotherm nonlinearity of selected organic compounds (i.e., naphthalene, nitrobenzenes, phenols and anilines) by XAD-7 was captured by a nonlinear partition mechanism rather than the adsorption mechanism. Nonlinear sorption of organic compounds by XAD-7 includes a nonlinear/displaced fraction and a linear/non-displaced fraction. A dual-mode (DM) model, including a nonlinear Dubinin-Ashtakhov (DA) model component and a linear model component, was developed to describe the nonlinear/displaced fraction and the linear/non-displaced fraction, respectively. The capacity of these two fractions are dependent on their solubility in water or octanol with positively linear relationships but not their molecular size, supporting the nonlinear partitioning mechanism. Besides van-der-waals force, hydrogen-bonding is primarily responsible for the nonlinear partitioning of phenols and anilines into XAD-7, while π-π interaction is responsible for the nonlinear partitioning of naphthalene and nitrobenzenes. The explored nonlinear partitioning mechanism for XAD-7 implies that the nonlinear sorption of organic compounds by porous resins should be recognized for their recovery and applications as sorbents.


Subject(s)
Organic Chemicals , Polystyrenes , Acrylic Resins , Adsorption
4.
Environ Pollut ; 247: 277-284, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30685668

ABSTRACT

The predominance of natural organic matter (NOM) in nonlinear sorption of nonionic organic compounds (NOCs) is a fundamental behavior that controlling the fate, transfer and bioavailability of NOCs in natural environment. There is a debate, i.e., whether the nonlinear sorption is captured by nonlinear partition mechanism or adsorption mechanism. The debate has been going on for decades because characteristics of nonlinear partition are still unknown due to the lack of an adsorbent that can partition NOCs nonlinearly. We find a resin ADS-21, with specific surface area undetectable (<0.5 m2 g-1) but high sorption capacity for NOCs (up to 1000 mg g-1 for phenol as an example), is an ideal adsorbent for examining characteristics of nonlinear partitioning. This resin has nonlinear isotherms for phenols and anilines but linear isotherms for polycyclic aromatic hydrocarbons and nitrobenzenes. The observed positively linear relationship of sorption capacities of NOCs with NOCs solubility in water or octanol, could be one of the characteristics of nonlinear partition. Moreover, competitive sorption and no desorption hysteresis could be observed for the nonlinear partition. Hydrogen-bonding of phenols and anilines with ADS-21 is responsible for nonlinear partition, competitive sorption and isotherm nonlinearity. These evidences would be supportive for understanding nonlinear partition and the nonlinear sorption of NOCs by NOM.


Subject(s)
Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Octanols/analysis , Octanols/chemistry , Organic Chemicals/analysis , Polycyclic Aromatic Hydrocarbons , Solubility , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL