Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.604
Filter
1.
Methods Mol Biol ; 2848: 105-116, 2025.
Article in English | MEDLINE | ID: mdl-39240519

ABSTRACT

The generation of quality data from a single-nucleus profiling experiment requires nuclei to be isolated from tissues in a gentle and efficient manner. Nuclei isolation must be carefully optimized across tissue types to preserve nuclear architecture, prevent nucleic acid degradation, and remove unwanted contaminants. Here, we present an optimized workflow for generating a single-nucleus suspension from ocular tissues of the embryonic chicken that is compatible with various downstream workflows. The described protocol enables the rapid isolation of a high yield of aggregate-free nuclei from the embryonic chicken eye without compromising nucleic acid integrity, and the nuclei suspension is compatible with single-nucleus RNA and ATAC sequencing. We detail several stopping points, either via cryopreservation or fixation, to enhance workflow adaptability. Further, we provide a guide through multiple QC points and demonstrate proof-of-principle using two commercially available kits. Finally, we demonstrate that existing in silico genotyping methods can be adopted to computationally derive biological replicates from a single pool of chicken nuclei, greatly reducing the cost of biological replication and allowing researchers to consider sex as a variable during analysis. Together, this tutorial represents a cost-effective, simple, and effective approach to single-nucleus profiling of embryonic chicken eye tissues and is likely to be easily modified to be compatible with similar tissue types.


Subject(s)
Cell Nucleus , Chickens , Single-Cell Analysis , Animals , Cell Nucleus/metabolism , Cell Nucleus/genetics , Chick Embryo , Single-Cell Analysis/methods , Eye/embryology , Eye/metabolism , Cryopreservation/methods , Chromatin Immunoprecipitation Sequencing/methods
2.
Mol Neurodegener ; 19(1): 69, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379975

ABSTRACT

BACKGROUND: Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS: aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS: In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS: Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.


Subject(s)
Cholinergic Neurons , Dopaminergic Neurons , Mitochondria , Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Mice , Mice, Inbred C57BL
3.
BMC Genomics ; 25(1): 943, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379794

ABSTRACT

BACKGROUND: Archived samples, including frozen and formalin fixed paraffin embedded (FFPE) tissues, are a vast resource of clinically annotated materials for the application of high-definition genomics to improve patient management and provide a molecular basis for the delivery of personalized cancer therapeutics. Notably, FFPE tissues are stable, provide repeat sampling of tissues of interest, and can be stored indefinitely at ambient temperature. The development of single cell DNA sequencing (scDNA-seq) technologies provides an unparalleled opportunity for the study of tumor heterogeneity and the identification of often rare subclonal cell populations that drive tumor evolution and progression to advanced therapy resistant disease. However, major limitations to the use of archived tissues for scDNA-seq include the low yields of intact cells in the presence of high levels of subcellular debris in biopsies, and the highly variable quantity and quality of the DNA extracted from samples of interest. The latter is of high significance for the use of FFPE tissues due to the presence of DNA-protein crosslinks. In addition, many samples, notably tumors arising in solid tissues, contain admixtures of reactive stroma, inflammatory cells, and necrosis in immediate contact with tumor cells. RESULTS: To expand their use for translational studies, we optimized flow sorting and sequencing of single nuclei from archived fresh frozen (FF) and FFPE tumor tissues. Our methods, which include isolation of intact nuclei suitable for library preparations, quality control (QC) metrics for each step, and a single cell sequencing bioinformatic processing and analysis pipeline, were validated with flow sorted nuclei from matching FF and FFPE ovarian cancer surgical samples and a sequencing panel of 553 amplicons targeting single nucleotide and copy number variants in genes of interest. CONCLUSIONS: Our flow sorting based protocol provides intact nuclei suitable for snDNA-seq from archival FF and FFPE tissues. Furthermore, we have developed QC steps that optimize the preparation and selection of samples for deep single cell clonal profiling. Our data processing pipeline captures rare subclones in tumors with highly variable genomes based on variants in genes of interest.


Subject(s)
Formaldehyde , Paraffin Embedding , Sequence Analysis, DNA , Single-Cell Analysis , Tissue Fixation , Humans , Single-Cell Analysis/methods , Sequence Analysis, DNA/methods , Neoplasms/genetics , Neoplasms/pathology , Flow Cytometry/methods , High-Throughput Nucleotide Sequencing/methods , Cell Nucleus/genetics , Female
4.
Cell Rep ; 43(10): 114790, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39356636

ABSTRACT

Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.

5.
Dev Cell ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39353435

ABSTRACT

Reconstructing functional neuronal circuits is one major challenge of central nervous system repair. Through activation of pro-growth signaling pathways, some neurons achieve long-distance axon regrowth. Yet, functional reconnection has hardly been obtained, as these regenerating axons fail to resume their initial trajectory and reinnervate their proper target. Axon guidance is considered to be active only during development. Here, using the mouse visual system, we show that axon guidance is still active in the adult brain in regenerative conditions. We highlight that regenerating retinal ganglion cell axons avoid one of their primary targets, the suprachiasmatic nucleus (SCN), due to Slit/Robo repulsive signaling. Together with promoting regeneration, silencing Slit/Robo in vivo enables regenerating axons to enter the SCN and form active synapses. The newly formed circuit is associated with neuronal activation and functional recovery. Our results provide evidence that axon guidance mechanisms are required to reconnect regenerating axons to specific brain nuclei.

6.
Front Neurosci ; 18: 1433061, 2024.
Article in English | MEDLINE | ID: mdl-39385850

ABSTRACT

Serotonin is an essential neuromodulator that affects behavioral and cognitive functions. Previous studies have shown that activation of serotonergic neurons in the dorsal raphe nucleus (DRN) promotes patience to wait for future rewards. However, it is still unclear whether serotonergic neurons also regulate persistence to act for future rewards. Here we used optogenetic activation and inhibition of DRN serotonergic neurons to examine their effects on sustained motor actions for future rewards. We trained mice to perform waiting and repeated lever-pressing tasks with variable reward delays and tested effects of optogenetic activation and inhibition of DRN serotonergic neurons on task performance. Interestingly, in the lever-pressing task, mice tolerated longer delays as they repeatedly pressed a lever than in the waiting task, suggesting that lever-pressing actions may not simply be costly, but may also be subjectively rewarding. Optogenetic activation of DRN serotonergic neurons prolonged waiting duration in the waiting task, consistent with previous studies. However, its effect on lever presses was nuanced, and was detected only by focusing on the period before premature reward check and by subtracting the trends within and across sessions using generalized linear model. While optogenetic inhibition decreased waiting, it did not affect lever pressing time or numbers. These results revealed that the necessity of motor actions may increase motivation for delayed rewards and that DRN serotonergic neurons more significantly promote waiting rather than persistent motor actions for future rewards.

7.
Parkinsonism Relat Disord ; 128: 107127, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39357432

ABSTRACT

BACKGROUND: Heterozygous variants in the glucocerebrosidase (GBA1) gene are the most common genetic risk factor for Parkinson's Disease (PD). GBA1-PD patients exhibit earlier disease onset, severe motor impairment, and heightened cognitive decline. Deep Brain Stimulation (DBS) offers motor improvement for PD patients, but its cognitive effects, particularly in GBA1-PD, are debated. METHODS: This study involved 96 PD patients who underwent subthalamic nucleus DBS at Hospital de la Santa Creu i Sant Pau between 2004 and 2023. Clinical and neuropsychological assessments were conducted pre- and post-surgery, focusing on Mattis Dementia Rating Scale (MDRS) and Frontal Systems Behavior Scale (FrSBe). Patients were categorized into GBA1-PD and non-GBA1-PD groups, with non-GBA1-PD further divided into cognitive fast-progressors and slow-progressors. RESULTS: GBA1 variants were present in 13.5 % of patients. GBA1-PD patients showed greater cognitive decline over time, particularly in attention, conceptualization, and memory, compared to non-GBA1-PD. Non-GBA1-PD fast-progressors exhibited significant cognitive deterioration in initiation and conceptualization within the first year post-DBS. Motor outcomes improved similarly across all groups, but slow-progressors showed a greater reduction in Levodopa Equivalent Daily Dose (LEDD). CONCLUSIONS: GBA1-PD patients experience more rapid cognitive decline, particularly in posterior-cortical and fronto-striatal functions. Additionally, a subset of non-GBA1-PD patients shows significant early cognitive decline post-DBS, especially in executive functions. Baseline MDRS scores do not predict cognitive outcomes, highlighting the need for further research to refine prognostic tools. Despite cognitive challenges, GBA1-PD patients benefit from DBS in terms of motor outcomes, underscoring the importance of individualized assessments for DBS suitability, regardless of genetic status.

8.
Article in English | MEDLINE | ID: mdl-39361723

ABSTRACT

Biobanking of tissue from clinically obtained kidney biopsies for later use with multi-omic and imaging techniques is an inevitable step to overcome the need of disease model systems and towards translational medicine. Hence, collection protocols ensuring integration into daily clinical routines using preservation media not requiring liquid nitrogen but instantly preserving kidney tissue for clinical and scientific analyses are of paramount importance. Thus, we modified a robust single nucleus dissociation protocol for kidney tissue stored snap frozen or in the preservation media RNAlaterand CellCover. Using porcine kidney tissue as surrogate for human kidney tissue, we conducted single nucleus RNA sequencing with the Chromium 10X Genomics platform. The resulting data sets from each storage condition were analyzed to identify any potential variations in transcriptomic profiles. Furthermore, we assessed the suitability of the preservation media for additional analysis techniques (proteomics, metabolomics) and the preservation of tissue architecture for histopathological examination including immunofluorescence staining. In this study, we show that in daily clinical routines the RNAlater facilitates the collection of highly preserved human kidney biopsies and enables further analysis with cutting-edge techniques like single nucleus RNA sequencing, proteomics, and histopathological evaluation. Only metabolome analysis is currently restricted to snap frozen tissue. This work will contribute to build tissue biobanks with well-defined cohorts of the respective kidney disease that can be deeply molecularly characterized, opening new horizons for the identification of unique cells, pathways and biomarkers for the prevention, early identification, and targeted therapy of kidney diseases.

9.
Biomed Pharmacother ; 180: 117514, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39362067

ABSTRACT

Alcohol use disorder (AUD) is the most prevalent substance use disorder but there is incomplete knowledge of the underlying molecular etiology. Here, we examined the cytosolic proteome from the nucleus accumbens core (NAcC) of ethanol drinking rhesus macaques to identify ethanol-sensitive signaling proteins. The targets were subsequently investigated using bioinformatics, genetic, and pharmacological manipulations in mouse models of ethanol drinking. Of the 1000+ cytosolic proteins identified in our screen, 50 proteins differed significantly between control and ethanol drinking macaques. Gene Ontology analysis of the differentially expressed proteins identified enrichment in pathways regulating metabolic processes and proteasome activity. Because the family of Glutathione S-transferases (GSTs) was enriched in these pathways, validation studies targeted GSTs using bioinformatics and genetically diverse mouse models. Gstp1 and Gstm2 were identified in Quantitative Trait Loci and published gene sets for ethanol-related phenotypes (e.g., ethanol preference, conditioned taste aversion, differential expression), and recombinant inbred strains that inherited the C57BL/6J allele at the Gstp2 interval consumed higher amounts of ethanol than those that inherited the DBA/2J allele. Genetic deletion of Gstp1/2 led to increased ethanol consumption without altering ethanol metabolism or sucrose preference. Administration of the pharmacologic activator of Gstp1/2, carnosic acid, decreased voluntary ethanol drinking. Proteomic analysis of the NAcC cytosolic of heavy drinking macaques that were validated in mouse models indicate a role for glutathione-mediated redox regulation in ethanol-related neurobiology and the potential of pharmacological interventions targeting this system to modify excessive ethanol drinking.

10.
Acta Biomater ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362450

ABSTRACT

Discectomy is the surgical standard of care to relieve low back pain caused by intervertebral disc (IVD) herniation. However, there remains annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration, which often result in recurrent herniation (re-herniation). Herein, we develop a polyphenol-modified waterborne polyurethane bioadhesives (PPU-glues) to promote therapy prognosis after discectomy. Being composed of tannic acid (TA) mixed cationic waterborne polyurethane nanodispersions (TA/WPU+) and curcumin (Cur) embedded anionic waterborne polyurethane nanodispersions (Cur-WPU-), PPU-glue gels rapidly (<10 s) and exhibits low swelling ratios, tunable degradation rates and good biocompatibility. Due to the application of an adhesion strategy combing English ivy mechanism and particle packing theory, PPU-glue also shows considerable lap shear strength against wet porcine skin (≈58 kPa) and burst pressure (≈26 kPa). The mismatched particle sizes and the opposite charges of TA/WPU+ and Cur-WPU- in PPU-glue bring electrostatic interaction and enhance particle packing density. PPU-glue possesses superior reactive oxygen species (ROS)-scavenging capacity derived from polyphenols. PPU-glue can regulate extracellular matrix (ECM) metabolism in degenerated NP cells, and it can promote therapy biologically and mechanically in degenerated rat caudal discs. In summary, this study highlights the therapeutic approach that combines AF seal and NP augmentation, and PPU-glue holds great application potentials for post discectomy therapy. STATEMENT OF SIGNIFICANCE: Currently, there is no established method for the therapy of annulus fibrosus (AF) defect and nucleus pulposus (NP) degeneration after discectomy. Herein, we developed a polyphenol-modified biomimetic polyurethane bioadhesives (PPU-glue) with strong adhesive strength and superior bioactive property. The adhesion strategy that combined a particle packing theory and an English ivy mechanism was firstly applied to the intervertebral disc repair field, which benefited AF seal. The modified method of incorporating polyphenols was utilized to confer with ROS-scavenging capacity, ECM metabolism regulation ability and anti-inflammatory property, which promoted NP augmentation. Thus, PPU-glue attained the synergy effect for post discectomy therapy, and the design principle could be universally expanded to the bioadhesives for other surgical uses.

11.
Biol Psychiatry ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369762

ABSTRACT

BACKGROUND: Increasing evidence implicates astrocytes in stress and depression in both rodent models and human Major Depressive Disorder (MDD). Despite this, little is known about the transcriptional responses to stress of astrocytes within the nucleus accumbens (NAc), a key brain reward region, and their influence on behavioral outcomes. METHODS: We used whole cell sorting, RNA-sequencing, and bioinformatic analyses to investigate the NAc astrocyte transcriptome in male mice in response to chronic social defeat stress (CSDS). Immunohistochemistry was used to determine stress-induced changes in astrocytic CREB within the NAc. Finally, astrocytic regulation of depression-like behavior was investigated using viral-mediated manipulation of CREB in combination with CSDS. RESULTS: We found a robust transcriptional response in NAc astrocytes to CSDS in stressed mice, with changes seen in both stress-susceptible and stress-resilient animals. Bioinformatic analysis revealed CREB, a transcription factor widely studied in neurons, as one of the top-predicted upstream regulators of the NAc astrocyte transcriptome, with opposite activation states implicated in resilient vs. susceptible mice. This bioinformatic deduction was confirmed at the protein level with immunohistochemistry. Moreover, NAc astrocyte morphological complexity correlated with CREB activation and was reduced selectively in astrocytes of resilient mice. Viral overexpression of CREB selectively in NAc astrocytes promoted susceptibility to chronic stress. CONCLUSIONS: Together, our data demonstrate that the astrocyte transcriptome responds robustly to CSDS and that transcriptional regulation in astrocytes contributes to depressive-like behaviors. A better understanding of transcriptional regulation in astrocytes may reveal unknown molecular mechanisms underlying neuropsychiatric disorders.

12.
J Neurosci Res ; 102(10): e25390, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39373381

ABSTRACT

Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.


Subject(s)
Avoidance Learning , Rats, Sprague-Dawley , Vagus Nerve , Animals , Male , Avoidance Learning/physiology , Avoidance Learning/drug effects , Rats , Vagus Nerve/physiology , Vagus Nerve/drug effects , Vagus Nerve/metabolism , Saporins , Adrenergic Neurons/drug effects , Adrenergic Neurons/physiology , Adrenergic Neurons/metabolism , Neural Pathways/drug effects , Neural Pathways/physiology , Norepinephrine/metabolism , Ribosome Inactivating Proteins, Type 1/pharmacology , Mental Recall/physiology , Mental Recall/drug effects , Memory/physiology , Memory/drug effects , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Septal Nuclei/physiology
13.
J Hist Neurosci ; : 1-32, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39374935

ABSTRACT

The hundredth anniversary of the death of French histologist Louis Ranvier (1835‒1922) is an opportunity to reexamine his elaboration of the first concept of the Schwann cell. A loyal supporter of Theodor Schwann and his discoveries, and an attentive reader of the work of Albert von Kölliker, Ranvier studied the anatomic details of the myelinated nerve fiber with picrocarminate staining. The diffusion of the dye into the nerve fiber at the cut ends and at the sites of the annular constrictions (Ranvier's nodes) set him on the path to defining a new cellular entity surrounding the axon, the "interannular segment," comprising a Schwann nucleus, myelin, and cytoplasm. Ramón y Cajal recognized in 1913 that this concept of the Schwann cell according to Ranvier and his pupil William Vignal had been a brilliant intuition, but it was widely rejected until it was rediscovered using electron microscopy in the 1950s. The article reconstructs the steps of Ranvier and Vignal in building this Schwann cell concept, as well as establishing bridges with the discoveries of the 1950s.

14.
J Neurosurg Case Lessons ; 8(15)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39378517

ABSTRACT

BACKGROUND: Responsive neurostimulation (RNS) has emerged as an effective neuromodulatory intervention for patients with medically refractory epilepsy who are not candidates for resective or ablative surgery. However, in patients with multifocal seizures arising from a widely distributed network, optimizing lead placement can be challenging. OBSERVATIONS: Here, the authors present the case of a patient with drug-resistant multifocal, nonlateralizing seizures and multiple developmental brain lesions who underwent phase II monitoring with stereoelectroencephalography electrodes targeting the lesion and surrounding cortex as well as the centromedian thalamus. Neurophysiological signals observed during recorded events implicated a seizure network within the left perisylvian polymicrogyria, involving the left parietal operculum, insula, and centromedian thalamic regions rather than a single focus. LESSONS: Using a regional RNS approach to modulate this network, the patient improved from 5 seizures a day to freedom from disabling seizures shortly after lead implantation despite low stimulation parameters. This has implications for understanding the timescale of adaptive mechanisms that occur in response to stimulation and supports the use of RNS as a surgical treatment for drug-resistant epilepsy. https://thejns.org/doi/10.3171/CASE24369.

15.
Clin Orthop Surg ; 16(5): 827-835, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39364116

ABSTRACT

Background: Degeneration of nucleus pulposus (NP) cells involves multiple factors. The relationship between the canonical Wnt/ß-catenin signaling pathway and matrix metalloproteinases (MMPs) is important in cellular senescence. Protein kinase C (PKC), an intermediate of the non-canonical Wnt pathway stimulated by phorbol myristate acetate (PMA), possibly prevents NP cell senescence, although not yet demonstrated in human-based studies. This study aimed to investigate the effect of PMA stimulation on the non-canonical and canonical Wnt pathways and MMP expression in human NP cells to ascertain its inhibitory effects on the senescence of NP cells. Methods: Human disc tissues of Pfirrmann grades 1 and 2 were collected from patients during spinal surgery and subsequently cultured. Protein and ribonucleic acid (RNA) were isolated from NP cells treated with PMA (400 nM) for 24 hours. Expression of MMP1, MMP13, tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), transient receptor potential vanilloid 4 (TRPV4), interleukin-6 (IL-6), and ß-catenin were detected using western blot analysis. Messenger RNA (mRNA) expression of type II collagen and glycosaminoglycan (GAG) were analyzed using reverse transcription polymerase chain reaction. IL-6 and prostaglandin E2 (PGE2) levels were measured using enzyme-linked immunosorbent assay. Results: Expression of PKC-δ (intermediate of the non-canonical Wnt pathway) and ß-catenin (intermediate of the canonical Wnt pathway) was increased by PMA treatment. The mRNA levels of type II collagen and GAG increased; however, their protein levels were not altered. PMA treatment increased the expression of MMP1, TIMP1, ADAMTS5, IL-6, PGE2, and TRPV4; however, the expression of MMP13 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was unaltered. Conclusions: PMA activated PKC-δ, affecting the non-canonical Wnt pathway; however, its effect on ß-catenin in the canonical Wnt pathway was limited. ß-catenin activation through the TRPV4 channel led to increased expression of MMP1 and ADAMTS5 and that of IL-6 and PGE2 owing to NF-κB expression. Consequently, the degeneration of NP cells was not prevented.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Protein Kinase C , Tetradecanoylphorbol Acetate , Humans , Intervertebral Disc Degeneration/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Protein Kinase C/metabolism , Nucleus Pulposus/metabolism , Adult , Middle Aged , Female , Male , Wnt Signaling Pathway/drug effects , Cells, Cultured , beta Catenin/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Interleukin-6/metabolism , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics
16.
Cereb Cortex ; 34(10)2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39367727

ABSTRACT

Behavioral despair is one of the clinical manifestations of major depressive disorder and an important cause of disability and death. However, the neural circuit mechanisms underlying behavioral despair are poorly understood. In a well-established chronic behavioral despair (CBD) mouse model, using a combination of viral tracing, in vivo fiber photometry, chemogenetic and optogenetic manipulations, in vitro electrophysiology, pharmacological profiling techniques, and behavioral tests, we investigated the neural circuit mechanisms in regulating behavioral despair. Here, we found that CBD enhanced CaMKIIα neuronal excitability in the dorsal dentate gyrus (dDG) and dDGCaMKIIα neurons involved in regulating behavioral despair in CBD mice. Besides, dDGCaMKIIα neurons received 5-HT inputs from median raphe nucleus (MRN) and were mediated by 5-HT1A receptors, whereas MRN5-HT neurons received CaMKIIα inputs from lateral hypothalamic (LH) and were mediated by AMPA receptors to regulate behavioral despair. Furthermore, fluvoxamine exerted its role in resisting behavioral despair through the LH-MRN-dDG circuit. These findings suggest that a previously unidentified circuit of LHCaMKIIα-MRN5-HT-dDGCaMKIIα mediates behavioral despair induced by CBD. Furthermore, these support the important role of AMPA receptors in MRN and 5-HT1A receptors in dDG that might be the potential targets for treatment of behavioral despair, and explain the neural circuit mechanism of fluvoxamine-resistant behavioral despair.


Subject(s)
Dentate Gyrus , Hypothalamic Area, Lateral , Animals , Dentate Gyrus/physiology , Dentate Gyrus/drug effects , Mice , Male , Hypothalamic Area, Lateral/physiology , Receptor, Serotonin, 5-HT1A/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neural Pathways/physiology , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Fluvoxamine/pharmacology , Disease Models, Animal , Depression , Optogenetics , Receptors, AMPA/metabolism
17.
Small Methods ; : e2401251, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375975

ABSTRACT

3D hierarchical superstructures (3DHSs) are key products of nature's evolution and have raised wide interest. However, the preparation of 3DHSs composed of building blocks with different structures is rarely reported, and regulating their structural parameters is challenging. Herein, a simple lecithin-mediated biomineralization approach is reported for the first time to prepare gold 3DHSs composed of 0D nucleus and 1D protruding dendritic spikes. It is demonstrated that a hydrophobic complex by coordination of disulfiram (DSF) with a share of chloroauric acid is the key to forming the 3DHSs. Under the lecithin mediation, chloroauric acid is first reduced to form the 0D nucleus, followed by the spike growth through the reduction of the hydrophobic complex. The prepared 3DHSs possess well-defined morphology with a spike length of ≈95 nm. Notably, the hierarchical spike density is systematically manipulated from 38.9% to 74.3% by controlling DSF concentrations. Moreover, the spike diameter is regulated from 9.2 to 12.9 nm by selecting different lecithin concentrations to tune the biomineralization process. Finite-difference time-domain (FDTD) simulations reveal that the spikes form "hot spots". The dense spike structure endows the 3DHSs with sound performance in surface-enhanced Raman scattering (SERS) applications.

18.
Cardiovasc Toxicol ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377990

ABSTRACT

Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and ß-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.

19.
Open Biol ; 14(10): 240110, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39353569

ABSTRACT

The members of the evolutionary conserved actin-binding Ezrin, Radixin and Moesin (ERM) protein family are involved in numerous key cellular processes in the cytoplasm. In the last decades, ERM proteins, like actin and other cytoskeletal components, have also been shown to be functional components of the nucleus; however, the molecular mechanism behind their nuclear activities remained unclear. Therefore, our primary aim was to identify the nuclear protein interactome of the single Drosophila ERM protein, Moesin. We demonstrate that Moesin directly interacts with the Mediator complex through direct binding to its Med15 subunit, and the presence of Moesin at the regulatory regions of the Hsp70Ab heat shock gene was found to be Med15-dependent. Both Moesin and Med15 bind to heat shock factor (Hsf), and they are required for proper Hsp gene expression under physiological conditions. Moreover, we confirmed that Moesin, Med15 and Hsf are able to bind the monomeric form of actin and together they form a complex in the nucleus. These results elucidate a mechanism by which ERMs function within the nucleus. Finally, we present the direct interaction of the human orthologues of Drosophila Moesin and Med15, which highlights the evolutionary significance of our finding.


Subject(s)
Cell Nucleus , Drosophila Proteins , Heat-Shock Response , Microfilament Proteins , Protein Binding , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cell Nucleus/metabolism , Humans , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Mediator Complex/metabolism , Mediator Complex/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Actins/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Membrane Proteins
20.
Eur J Pharmacol ; 984: 177023, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362391

ABSTRACT

Though µ and δ opioid receptors are reported to regulate energy homeostasis, any role for κ opioid receptors in these processes remains unclear. The present study investigated the role of κ opioid receptors in regulation of feeding behavior and plasma glucose levels using nalfurafine, a κ opioid receptor agonist used clinically. Systemic injection of nalfurafine increased food intake under non-fasted conditions, but not after food deprivation, and this effect was inhibited by the κ opioid receptor antagonist norbinaltorphimine. In contrast, nalfurafine did not affect plasma glucose levels. I.c.v. injection of nalfurafine increased food intake, whereas systemic injection of nalfurafine methiodide, which does not penetrate the blood brain barrier, was without effect. In addition, nalfurafine tended to increase preproorexin mRNA in the hypothalamus. However, neither the orexin OX1 receptor antagonist YNT-1310 nor the non-selective orexin receptor antagonist suvorexant inhibited the increase in food intake induced by nalfurafine. While nalfurafine injected into the lateral hypothalamus did not affect food intake, nalfurafine injected into the nucleus accumbens increased food intake, which was inhibited by norbinaltorphimine. Finally, we examined the effect of nalfurafine on anorexia induced by the anti-cancer agent 5-fluorouracil. Reduced food intake at 2 days following 5-fluorouracil administration was alleviated across the first 3 h following daily injection of nalfurafine, though daily food intake was not influenced. These results indicate that nalfurafine promotes feeding behavior through stimulation of κ opioid receptors in the nucleus accumbens and may be a candidate for reducing anorexia due to anti-cancer agents.

SELECTION OF CITATIONS
SEARCH DETAIL