Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.846
Filter
1.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003058

ABSTRACT

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Subject(s)
Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology , Phosphorus/metabolism , Salinity , Sodium Chloride , Bacteria/metabolism , Microbiota , Biological Oxygen Demand Analysis
2.
Tree Physiol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113606

ABSTRACT

Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorous (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Mn treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis, and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine, and glutathione metabolism under Mn and P treatments. P application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis, and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress, and strategies for managing metal toxicity in peach orchards.

3.
Insect Sci ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114883

ABSTRACT

Aphids are sap-feeding plant pests that depend on their symbiotic relationships with the primary endosymbiont Buchnera aphidicola to adapt to impoverished diets. However, how the host plant affects the aphid primary symbiont and aphid adaptation to host plant transfer are poorly known. In this study, aphid symbiont screening and genotype identification were used to establish 2 aphid strains (Rhopalosiphum maidis [Rm] and Rhopalosiphum padi [Rp] strains) containing only Buchnera without any secondary symbionts for both wheat aphid species (R. maidis and R. padi). Aphid fitness and Buchnera titers were unstable on some of these host plants after transferring to novel host plants (G1-G5), which were influenced by host plant species and generations; however, they stabilized after prolonged feeding on the same plants for 10 generations. The electropenetrography (EPG) records showed that the allocation of aphid feeding time was significantly distinct in the 6 host plants; aphids had more intracellular punctures and spent more nonprobing time on green bristlegrass which was not conducive to its growth compared with other plants. The content of soluble sugar, soluble protein, and amino acid in the leaves of the 6 host plants were also clearly separated. The correlation coefficient analysis showed that the nutrient contents of host plants had significant correlations with aphid feeding behaviors, fitness, and Buchnera titers. In the meantime, aphid fitness, and Buchnera titers were also affected by aphid feeding behaviors. Also, Buchnera titers of aphid natural populations on 6 host plants showed a visible difference. Our study deepened our understanding of the interaction among aphids, endosymbionts, and host plants, indicating that the host plant nutrient content is a predominant factor affecting aphid adaptation to their diet, initially affecting aphid feeding behaviors, and further affecting aphid fitness and Buchnera titers, which would further contribute to exploiting new available strategies for aphid control.

4.
Mycorrhiza ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115556

ABSTRACT

Rhizospheric interactions among plant roots, arbuscular mycorrhizal fungi, and plant growth-promoting bacteria (PGPB) can enhance plant health by promoting nutrient acquisition and stimulating the plant immune system. This pot experiment, conducted in autoclaved soil, explored the synergistic impacts of the arbuscular mycorrhizal fungus Funneliformis mosseae with four individual bacterial strains, viz.: Cronobacter sp. Rz-7, Serratia sp. 5-D, Pseudomonas sp. ER-20 and Stenotrophomonas sp. RI-4 A on maize growth, root functional traits, root exudates, root colonization, and nutrient uptake. The comprehensive biochemical characterization of these bacterial strains includes assessments of mineral nutrient solubilization, plant hormone production, and drought tolerance. The results showed that all single and interactive treatments of the mycorrhizal fungus and bacterial strains improved maize growth, as compared with the control (no fungus or PGPB). Among single treatments, the application of the mycorrhizal fungus was more effective than the bacterial strains in stimulating maize growth. Within the bacterial treatments, Serratia sp. 5-D and Pseudomonas sp. ER-20 were more effective in enhancing maize growth than Cronobacter sp. Rz-7 and Stenotrophomonas sp. RI-4 A. All bacterial strains were compatible with Funneliformis mosseae to improve root colonization and maize growth. However, the interaction of mycorrhiza and Serratia sp. 5-D (M + 5-D) was the most prominent for maize growth improvement comparatively to all other treatments. We observed that bacterial strains directly enhanced maize growth while indirectly promoting biomass accumulation by facilitating increased mycorrhizal colonization, indicating that these bacteria acted as mycorrhizal helper bacteria.

5.
Front Plant Sci ; 15: 1381856, 2024.
Article in English | MEDLINE | ID: mdl-39100081

ABSTRACT

Iron (Fe) is an essential nutrient for almost all organisms. However, free Fe within cells can lead to damage to macromolecules and oxidative stress, making Fe concentrations tightly controlled. In plants, Fe deficiency is a common problem, especially in well-aerated, calcareous soils. Rice (Oryza sativa L.) is commonly cultivated in waterlogged soils, which are hypoxic and can cause Fe reduction from Fe3+ to Fe2+, especially in low pH acidic soils, leading to high Fe availability and accumulation. Therefore, Fe excess decreases rice growth and productivity. Despite the widespread occurrence of Fe excess toxicity, we still know little about the genetic basis of how rice plants respond to Fe overload and what genes are involved in variation when comparing genotypes with different tolerance levels. Here, we review the current knowledge about physiological and molecular data on Fe excess in rice, providing a comprehensive summary of the field.

6.
Physiol Mol Biol Plants ; 30(7): 1099-1111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39100873

ABSTRACT

For agricultural safety and sustainability, instead of synthetic fertilizers the eco-friendly and inexpensive biological applications include members of plant-growth-promoting rhizobacteria (PGPR) genera, Pseudomonas spp. will be an excellent alternative option to bioinoculants as they do not threaten the soil biota. The effect of phosphate solubilizing bacteria (PSB) Pseudomonas aeruginosa (MK 764942.1) on groundnuts' growth and yield parameters was studied under field conditions. The strain was combined with a single super phosphate and tested in different combinations for yield improvement. Integration of bacterial strain with P fertilizer gave significantly higher pod yield ranging from 7.36 to 13.18% compared to plots where sole inorganic fertilizers were applied. Similarly, the combined application of PSB and inorganic P fertilizer significantly influenced plant height and number of branches compared to sole. However, a higher influence of phosphorous application (both PSB and P fertilizer) observed both nodule dry weight and number of nodules. Combined with single super phosphate (100% P) topped in providing better yield attributing characters (pod yield, haulm yield, biomass yield, 1000 kernel weight, and shelling percentage) in groundnut. Higher oil content was also recorded with plants treated with Pseudomonas aeruginosa combined with single super phosphate (SSP) (100% P). Nutrients like nitrogen (N), phosphorous (P), and potassium (K) concentrations were positively influenced in shoot and kernel by combined application. In contrast, Ca, Mg, and S were found to be least influenced by variations of Phosphorous. Plants treated with Pseudomonas aeruginosa and lower doses of SSP (75% P) recorded higher shoot and kernel P. We found that co-inoculation with PSB and SSP could be an auspicious substitute for utilizing P fertilizer in enhancing yield and protecting nutrient concentrations in groundnut cultivation. Therefore, PSB can be a good substitute for bio-fertilizers to promote agricultural sustainability.

7.
JMIR Dermatol ; 7: e50143, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102684

ABSTRACT

BACKGROUND: Pathogenesis of seborrheic dermatitis involves lipid secretion by sebaceous glands, Malassezia colonization, and an inflammatory response with skin barrier disruption. Each of these pathways could be modulated by diet, obesity, and nutritional supplements. Current treatment options provide only temporary control of the condition; thus, it is essential to recognize modifiable lifestyle factors that may play a role in determining disease severity. OBJECTIVE: This study aimed to summarize published evidence on diet, nutritional supplements, alcohol, obesity, and micronutrients in patients with seborrheic dermatitis and to provide useful insights into areas of further research. METHODS: A literature search of Scopus, PubMed, and MEDLINE (Ovid interface) for English language papers published between 1993 and 2023 was conducted on April 16, 2023. Case-control studies, cohort studies, and randomized controlled trials with 5 or more subjects conducted on adult participants (>14 years) were included, case reports, case series, and review papers were excluded due to insufficient level of evidence. RESULTS: A total of 13 studies, 8 case-control, 3 cross-sectional, and 2 randomized controlled trials, involving 13,906 patients were included. Seborrheic dermatitis was correlated with significantly increased copper, manganese, iron, calcium, and magnesium concentrations and significantly lower serum zinc and vitamin D and E concentrations. Adherence to the Western diet was associated with a higher risk for seborrheic dermatitis in female patients and an increased consumption of fruit was associated with a lower risk of seborrheic dermatitis in all patients. The prebiotic Triphala improved patient satisfaction and decreased scalp sebum levels over 8 weeks. Most studies find associations between regular alcohol use and seborrheic dermatitis, but the association between BMI and obesity on seborrheic dermatitis severity and prevalence is mixed. CONCLUSIONS: This review sheds light on specific promising areas of research that require further study, including the need for interventional studies evaluating serum zinc, vitamin D, and vitamin E supplementation for seborrheic dermatitis. The negative consequences of a Western diet, alcohol use, obesity, and the benefits of fruit consumption are well known; however, to fully understand their specific relationships to seborrheic dermatitis, further cohort or interventional studies are needed. TRIAL REGISTRATION: PROSPERO CRD42023417768; https://tinyurl.com/bdcta893.


Subject(s)
Dermatitis, Seborrheic , Dietary Supplements , Obesity , Humans , Dermatitis, Seborrheic/epidemiology , Obesity/diet therapy , Nutritional Status , Diet , Micronutrients/blood , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology
8.
Chemosphere ; 363: 142998, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097110

ABSTRACT

Mass cultivation of high-value aromatic herbs such as Vietnamese coriander and Persicaria odorata required specific soil, nutrients, and irrigation, mostly found in the limited natural wetland. This study aimed to evaluate the capacity of P. odorata at different densities in nutrient removal and the growth performance of African catfish, Clarias gariepinus in aquaponic systems. P. odorata was cultivated for 40 d with less than 10% water exchange. The effects of increasing crop densities, from zero plants for the control, 0.035 ± 0.003 kg/m2 in Treatment 1, 0.029 ± 0.002 kg/m2 in Treatment 2, and 0.021 ± 0.003 kg/m2 in Treatment 3, were tested on the growth performance of C. gariepinus with an initial density of 3.00 ± 0.50 kg/m3. The specific growth rate (SGR), daily growth rate of fish (DGRf), and survival rate (SR) of the C. gariepinus were monitored. Nutrient removal, daily growth rate of plant (DGRp), relative growth rate (RGR), and the sum of leaf number (Æ©n) of the P. odorata plant were also recorded. It was found that nutrient removal percentage significantly increased with the presence of P. odorata at different densities. The growth performance of C. gariepinus was also affected by P. odorata density in each treatment. However, no significant difference was observed in the DGRp and RGR of the P. odorata (p>0.05), except for Æ©n values. Treatment 1 had the highest Æ©n number compared to Treatment 2 and Treatment 3, showing a significant difference (p<0.05). This study demonstrates that the presence of P. odorata significantly contributes to lower nutrient concentrations, supporting the fundamental idea that plants improve water quality in aquaponic systems.

9.
Front Plant Sci ; 15: 1427471, 2024.
Article in English | MEDLINE | ID: mdl-39109059

ABSTRACT

In modern agriculture, Controlled environment agriculture (CEA) stands out as a contemporary production mode that leverages precise control over environmental conditions such as nutrient, temperature, light, and other factors to achieve efficient and high-quality agricultural production. Numerous studies have demonstrated the efficacy of manipulating these environmental factors in the short period before harvest to enhance crop yield and quality in CEA. This comprehensive review aims to provide insight into various pre-harvest practices employed in CEA, including nutrient deprivation, nutrient supply, manipulation of the light environment, and the application of exogenous hormones, with the objective of improving yield and quality in horticultural crops. Additionally, we propose an intelligent pre-harvest management system to cultivate high-quality horticultural crops. This system integrates sensor technology, data analysis, and intelligent control, enabling the customization of specific pre-harvest strategies based on producers' requirements. The envisioned pre-harvest intelligent system holds the potential to enhance crop quality, increase yield, reduce resource wastage, and offer innovative ideas and technical support for the sustainable development of CEA.

10.
Curr Dev Nutr ; 8(7): 103797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39104805

ABSTRACT

Background: Ethnicity, cultural background, and geographic location differ significantly within the United States Hispanic/Latino population. These variations can greatly define diet and its relationship with cardiometabolic disease, thus influencing generalizability of results. Objectives: We aimed to examine nutrient-based food patterns (NBFPs) of Hispanic/Latino adults and their association with cardiometabolic risk factors (dyslipidemia, hypertension, obesity, diabetes) across 2 United States population-based studies with differing sampling strategies. Methods: Data were collected from Mexican or other Hispanic adult participants from 2007-2012 National Health and Nutrition Examination Survey (NHANES) (n = 3605) and 2007-2011 Hispanic Community Health Survey/Study of Latinos (HCHS/SOL, n = 14,416). NBFPs were derived using factor analysis on nutrient intake data estimated from 24-h dietary recalls and interpreted using common foods in which these nutrients are prominent. Cross-sectional associations between NBFPs (quintiles) and cardiometabolic risk factors, defined by clinical measures and self-report, were estimated using survey-weighted multivariable-adjusted logistic models, accounting for multiple testing. Results: Five NBFPs were identified in both studies: 1) meats, 2) grains/legumes, 3) fruits/vegetables, 4) dairy, and 5) fats/oils. Associations with cardiometabolic risk factors differed by NBFP and study. In HCHS/SOL, the odds of diabetes were lower for persons in the highest quintile of meats NBFP (odds ratio [OR]: 0.73; 95% confidence interval [CI]: 0.58, 0.92) and odds were higher for those in the lowest quintile of fruits/vegetables (OR: 0.71; 95% CI: 0.55, 0.93) compared to those in the third (moderate intake) quintile. Those in the fourth quintile of dairy NBFP had higher odds of hypertension than those in the third quintile (OR: 1.31; 95% CI: 1.01, 1.70). In NHANES, the odds of hypertension were higher for those in the fourth quintile of dairy (OR: 1.88; 95% CI: 1.10, 3.24) than those in the third quintile. Conclusions: Diet-disease relationships among Hispanic/Latino adults vary according to 2 population-based studies. These differences have research and practical implications when generalizing inferences on heterogeneous underrepresented populations.

11.
Front Microbiol ; 15: 1429755, 2024.
Article in English | MEDLINE | ID: mdl-39113834

ABSTRACT

Introduction: Verticillium dahliae, a soil-borne fungal pathogen, can cause cotton Verticillium wilt. In this study, VdP5CDH, the member of the ALDH_F4-17 family of carboxylate dehydrogenases, was identified in the genome of V. dahliae and investigated function in regulating virulence by generating gene deletion mutants and complementary mutants. Methods: Homologous recombination method was used to construct mutants, transcriptome sequencing revealed gene-related metabolic pathways, and disease degree of cotton was observed through pathogen infection experiments. Results: The conidial surface of VdP5CDH deletion strains was dented and shriveled, and the number of conidial spores increased. Compared with the wild-type (WT), the mycelial diameter of deletion mutants increased by 10.59%-11.16%, the mycelial growth showed irregular branching patterns, and misaligned arrangement. Although capable of penetrating cellophane, deletion mutants were unable to produce melanin. VdP5CDH was mainly associated with glucose metabolism, nitrogen metabolism, ABC transporter activity as well as various amino acid metabolic processes. After gene knockout, raffinose and pectin were used as the main carbon sources to promote the growth of strains and the growth rate of deletion strains in the medium containing raffinose was higher than that of WT. Consequently, the deletion mutant strains decreased utilization efficiency with which they utilized various nitrogen sources. The deletion mutants maintain responsiveness to osmotic stress and oxidative stress stimuli. Additionally, compared to WT strains, the deletion mutant strains exhibited differences in culture temperature tolerance, UV exposure response, and fungicide sensitivity. After cotton was infected with deletion strains conidial suspension, its disease index increased dramatically, while it gradually decreased after spraying with 2 mM glutamate in batches. With the increase of spraying times, the effect was more significant, and the disease index decreased by 18.95%-19.66% at 26 dpi. Discussion: These results indicated that VdP5CDH regulates the pathogenicity of fungi and controls mycelia growth, melanin formation, conidia morphology, abiotic stress resistance, and the expression of infecting structure-related genes.

12.
Front Plant Sci ; 15: 1411572, 2024.
Article in English | MEDLINE | ID: mdl-39114473

ABSTRACT

The management of nitrogen (N) fertilization is of fundamental importance in hydroponics. To reduce the supply of nitrate (NO3 -) in fertigation recipes for Batavia lettuce crops grown in closed hydroponics, partial replacement of nitrate by chloride (NO3 -/Cl-) at different ratios but with the same equivalent sum was experimentally tested. The experiment included four nutritional treatments in the replenishment nutrient solution, particularly T1; 0.7 mM Cl-/19 mM NO3 -, T2; 2 mM Cl-/17.7 mM NO3 -, T3; 4 mM Cl-/15.7 mM NO3 - and T4; 6 mM Cl-/13.7 mM NO3 -. The results showed that reducing nitrate supply combined with equivalent increase in chloride application gradually reduced the gap between nitrate input and nitrogen uptake concentrations, with the smallest differences occurring in T4 treatment, which reduced the nitrate concentration in the drainage by 50%. The tested treatments led to very small variations in plant water uptake, production of fresh biomass and nutritional quality, which is justified by the proper functioning of key physiological mechanisms, such as stomatal conductance, which was followed by an increased efficiency of nitrogen use up to 25% (kg fresh biomass kg-1 N supply). The steady level of C/N ratio in the plant tissue irrespective of NO3 -/Cl- supply ratio points to sufficiency in photosynthetic products and adequacy in the supply of nitrogen, although leaf Cl- content increased up to 19.6 mg g-1 dry weight in the lowest NO3 -/Cl- treatment. Nutrient uptake concentrations were determined as follows: 13.4 (N), 1.72 (P), 10.2 (K), 3.13 (Ca), 0.86 (Mg, mmol L-1), 27.8 (Fe), 5.63 (Mn), 5.45 (Zn) and 0.72 (Cu, µmol L-1). This study suggests that replacing 30% of NO3 - supply with Cl- in fertigation recipes for hydroponic lettuce crops reduces leaf nitrate content without affecting physiological processes, growth, and quality, verifying in parallel the role of chloride as a beneficial macronutrient. Finally, a relationship between Cl- uptake and its concentration in the root zone solution was established enabling the simulation of chloride to water consumption.

13.
Water Res ; 263: 122193, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39116712

ABSTRACT

Controlling lake eutrophication is a challenge. A case-specific diagnostics driven approach is recommended that will guide to a suite of measures most promising in restoration of eutrophic lakes as exemplified by the case of the shallow lake Groote Melanen, The Netherlands. A lake system analysis identified external and internal nutrient load as main reasons for poor water quality and reoccurring cyanobacterial blooms in the lake. Based on this analysis, a package of restoration measures was implemented between January 2015 and May 2016. These measures included fish removal, dredging, capping of peat rich sediment with sand and an active barrier (lanthanum-modified bentonite), diversion of two inlet streams, reconstruction of banks, and planting macrophytes. Dredging and sand capping caused temporarily elevated turbidity and suspended solids concentrations, while addition of the lanthanum-modified clay caused a temporary exceedance of the Dutch La standard for freshwaters. Diversion of inflow streams caused 35 % less water inflow and larger water level fluctuations, but the lake remained water transporting with strongly improved water quality as was revealed by comparing five years pre-intervention water quality data with five years' post-intervention data. Total phosphorus concentration in the water column was reduced by 93 % from 0.47 mg P l-1 before the intervention to 0.03 mg P l-1 after the intervention, total nitrogen by 66 % from 1.27 to 0.21 mg N l-1, total chlorophyll-a by 75 % from 68 to 16 µg l-1, cyanobacteria chlorophyll-a by 88 % from 32 to 4 µg l-1. Turbidity had declined by 58 % from 23.5 FTU to on average 9.9 FTU. No cyanobacteria blooms were recorded over the entire post-intervention monitoring period (2016-2021). Submerged macrophytes increased from complete absence before intervention to around 10 %-15 % coverage after intervention. Repeated fish removal lowered the fish stock to below 100 kg ha-1 with 12 % of bream and carp remaining. Hence, the package of cohesive measures that was based on a thorough diagnosis resulted in rapidly, strongly and enduringly improved water quality. This case provides evidence for the power of combining measures in restoring eutrophic lakes.

14.
Mar Environ Res ; 200: 106668, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39116738

ABSTRACT

Phytoplankton responds rapidly to nutrient availability variations, becoming a useful indicator for eutrophication and/or management actions to reduce it. The present study evaluated the medium-term response of the phytoplankton community of a temperate estuary (Urdaibai estuary) to the cessation of discharges from a wastewater treatment-plant (WWTP), comparing the physicochemical conditions and the phytoplankton community before (2020) and after (2022) the sewerage works. The cessation led to a decrease of ammonium and phosphate, causing decreases of phytoplankton biomass in the outer and middle estuary and increases in the surroundings of the WWTP. Community composition also changed, recording an increase of prasinoxanthin-containing algae's contribution to total biomass, and a composition shift in the inner estuary, from mainly flagellates (alloxanthin-containing and chlorophyll b-containing algae) to the increase of diatoms, which could be prompted by the change of nutrient-ratios and the nitrogen source, and might indicate the recuperation of the system.

15.
Microb Cell Fact ; 23(1): 226, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127680

ABSTRACT

BACKGROUND: Endophytic fungi (EF) reside within plants without causing harm and provide benefits such as enhancing nutrients and producing bioactive compounds, which improve the medicinal properties of host plants. Selecting plants with established medicinal properties for studying EF is important, as it allows a deeper understanding of their influence. Therefore, the study aimed to investigate the impact of EF after inoculating the medicinal plant Perilla frutescens, specifically focusing on their role in enhancing medicinal properties. RESULTS: In the current study, the impact of two EF i.e., Irpex lenis and Schizophyllum commune isolated from A. bracteosa was observed on plant Perilla frutescens leaves after inoculation. Plants were divided into four groups i.e., group A: the control group, group B: inoculated with I. lenis; group C: inoculated with S. commune and group D: inoculated with both the EF. Inoculation impact of I. lenis showed an increase in the concentration of chlorophyll a (5.32 mg/g), chlorophyll b (4.46 mg/g), total chlorophyll content (9.78 mg/g), protein (68.517 ± 0.77 mg/g), carbohydrates (137.886 ± 13.71 mg/g), and crude fiber (3.333 ± 0.37%). Furthermore, the plants inoculated with I. lenis showed the highest concentrations of P (14605 mg/kg), Mg (4964.320 mg/kg), Ca (27389.400 mg/kg), and Mn (86.883 mg/kg). The results of the phytochemical analysis also indicated an increased content of total flavonoids (2.347 mg/g), phenols (3.086 mg/g), tannins (3.902 mg/g), and alkaloids (1.037 mg/g) in the leaf extract of P. frutescens inoculated with I. lenis. Thus, overall the best results of inoculation were observed in Group B i.e. inoculated with I. lenis. GC-MS analysis of methanol leaf extract showed ten bioactive constituents, including 9-Octadecenoic acid (Z)-, methyl ester, and hexadecanoic acid, methyl ester as major constituents found in all the groups of P. frutescens leaves. The phenol (gallic acid) and flavonoids (rutin, kaempferol, and quercetin) were also observed to increase after inoculation by HPTLC analysis. The enhancement in the phytochemical content was co-related with improved anti-oxidant potential which was analyzed by DPPH (% Inhibition: 83.45 µg/ml) and FRAP (2.980 µM Fe (II) equivalent) assay as compared with the control group. CONCLUSION: Inoculation with I. lenis significantly enhances the uptake of nutritional constituents, phytochemicals, and antioxidant properties in P. frutescens, suggesting its potential to boost the therapeutic properties of host plants.


Subject(s)
Antioxidants , Endophytes , Perilla frutescens , Phytochemicals , Plant Leaves , Schizophyllum , Perilla frutescens/chemistry , Perilla frutescens/metabolism , Antioxidants/metabolism , Schizophyllum/metabolism , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Endophytes/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Chlorophyll/metabolism
16.
Sci Total Environ ; : 175460, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39137841

ABSTRACT

Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.

17.
Environ Res ; 261: 119762, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122165

ABSTRACT

Storm events result in nutrient fluctuations and deterioration of reservoir water supply quality. Understanding of nutrient dynamics (e.g., concentration, composition, loads and transport pathways) and adoption of effective management strategies are critical for safeguarding water quality. A comprehensive monitoring was conducted for three storm events during the rainy season in 2023. Results showed nitrogen (N) and phosphorus (P) dynamics demonstrate a significant response to hydrological process. Rainfall resulted in the highest event mean concentrations (EMCs) of total nitrogen (TN), nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N), total phosphorus (TP), and particulate phosphorus (PP) in the runoff being 1.97, 2.15, 2.30, 44.17, and 62.38 times higher than those observed in baseflow. On average, NO3--N/PP accounted for 82 %/96 % of N/P exports. Hysteresis analyses reveal that NH4+-N and PP were mainly transported by surface runoff from over-land sources, whereas TN and NO3--N were primarily delivered by subsurface runoff. Additionally, nutrient concentrations were significantly higher in the intrusive layer in reservoir compared to the pre-storm period, which gradually decreased from the tail to the head as particulate sedimentation and water column mixing occurred. Water-lifting-aerators (WLAs) were employed to alter the reservoir thermal stratification regime via artificial mixing to affect the intrusive layer of storm runoff. Comparison of the intrusive layer for three storms reveals that WLAs triggers the storm runoff to form an underflow via increasing the reservoir bottom water temperature above that the runoff, ensuring that water quality at the intake position remains unaffected by inflows. These findings serve as a reference for the response of reservoir eutrophication levels to storm events and present practical engineering experience for enhancing water quality safety during the rainy season.

18.
Nutrients ; 16(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125312

ABSTRACT

BACKGROUND: Previous studies have shown that Japanese dietary patterns are associated with high nutrient density. However, these studies were limited to the Japanese population. We examined this association in the US population. METHODS: A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. We included 3138 people aged 20-79 years. Food and nutrient intake data were based on the 24 h recall method. Three Japanese diet indices were used: (1) Japanese Diet Index (JDI, based on 9 food items), (2) modified JDI (mJDI, based on 12 food items), and (3) weighted JDI (wJDI, selected and weighted from mJDI food items). The nutrient density (ND) score was calculated based on the Nutrient-Rich Food Index 9.3. Spearman's rank correlation coefficients were calculated. RESULTS: The correlation coefficients with the ND score were 0.24 (p < 0.001) for the JDI and 0.38 (p < 0.001) for the mJDI. The correlation coefficient between the wJDI and ND score was 0.48 (p < 0.001). The three Japanese diet indices were correlated with the ND score in all racial groups (p < 0.001). CONCLUSIONS: Even among the US population, higher degrees of Japanese diet defined by the JDI or mJDI were associated with higher nutrient density.


Subject(s)
Diet , Nutrition Surveys , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Cross-Sectional Studies , Diet/statistics & numerical data , Feeding Behavior , Japan , Nutrients/analysis , Nutritive Value , United States
19.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125921

ABSTRACT

The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.


Subject(s)
Biofilms , Carbon , Pseudomonas , Biofilms/growth & development , Pseudomonas/physiology , Pseudomonas/metabolism , Pseudomonas/genetics , Carbon/metabolism , Plant Roots/microbiology , Rhizosphere , Solanum lycopersicum/microbiology , Zea mays/microbiology , Glass , Bacterial Adhesion , Glycerol/metabolism , Polystyrenes
20.
J Hazard Mater ; 478: 135443, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39128156

ABSTRACT

Microplastics (MPs) are widespread in agroecosystems and profoundly impact soil microbiome and nutrient cycling. However, the effects of MPs on soil autotrophic ammonium oxidization processes, including nitrification, complete ammonium oxidation (comammox), anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled to iron reduction (Feammox), remain unclear. These processes are the rate-limiting steps of nitrogen cycling in agroecosystems. Here, our work unveiled that exposures of polyethylene (PE), polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT) MPs significantly modulated ammonium oxidization pathways with distinct type- and dose-dependent effects. Nitrification remained the main contributor (56.4-70.7 %) to soil ammonium removal, followed by comammox (11.7-25.6 %), anammox (5.0-20.2 %) and Feammox (3.3-11.6 %). Compared with conventional nonbiodegradable MPs (i.e., PE and PP), biodegradable MPs (i.e., PLA and PBAT) exhibited more pronounced impacts on soil nutrient conditions and functional microbes, which collectively induced alterations in soil ammonium oxidation. Interestingly, low-dose PLA and PBAT remarkably enhanced the roles of anammox and Feammox in soil ammonium removal, contributing to the mitigation of soil acidification in agroecosystems. This study highlights the diverse responses of ammonium oxidization pathways to MPs, further deepening our understanding of how MPs affect biogeochemical cycling and enriching strategies for agricultural managements amid increasing MPs pollution.

SELECTION OF CITATIONS
SEARCH DETAIL