Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 945
Filter
1.
Gene ; 932: 148866, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39153704

ABSTRACT

DNA meiotic recombinase 1 (disrupted meiotic cDNA, Dmc1) protein is homologous to the Escherichia coli RecA protein, was first identified in Saccharomyces cerevisiae. This gene has been well studied as an essential role in meiosis in many species. However, studies on the dmc1 gene in reptiles are limited. In this study, a cDNA fragment of 1,111 bp was obtained from the gonadal tissues of the Chinese soft-shell turtle via RT-PCR, containing a 60 bp 3' UTR, a 22 bp 5' UTR, and an ORF of 1,029 bp encoding 342 amino acids, named Psdmc1. Multiple sequence alignments showed that the deduced protein has high similarity (>95 %) to tetrapod Dmc1 proteins, while being slightly lower (86-88 %) to fish species.Phylogenetic tree analysis showed that PsDmc1 was clustered with the other turtles' Dmc1 and close to the reptiles', but far away from the teleost's. RT-PCR and RT-qPCR analyses showed that the Psdmc1 gene was specifically expressed in the gonads, and much higher in testis than the ovary, especially highest in one year-old testis. In situ hybridization results showed that the Psdmc1 was mainly expressed in the perinuclear cytoplasm of primary and secondary spermatocytes, weakly in spermatogonia of the testes. These results indicated that dmc1 would be majorly involved in the developing testis, and play an essential role in the germ cells' meiosis. The findings of this study will provide a basis for further investigations on the mechanisms behind the germ cells' development and differentiation in Chinese soft-shell turtles, even in the reptiles.


Subject(s)
Gametogenesis , Phylogeny , Turtles , Animals , Female , Male , Amino Acid Sequence , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cloning, Molecular , Gametogenesis/genetics , Meiosis/genetics , Ovary/metabolism , Spermatocytes/metabolism , Testis/metabolism , Turtles/genetics , Turtles/metabolism
2.
Biochem Soc Trans ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263986

ABSTRACT

Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development. Initial studies on translational control necessitated fixed tissue, but the last 30 years have sparked innovative live-cell studies in several cell types to deliver a far more nuanced picture of how mRNA-protein dynamics exert translational control. In this review, we weave together the events that underpin mRNA processes and showcase the pivotal studies that revealed how a multitude of protein factors engage with a transcript. We highlight a mRNA's ability to act as a 'super scaffold' to facilitate molecular condensate formation and further moderate translational control. We focus on the Drosophila melanogaster germline due to the extensive post-transcriptional regulation occurring during early oogenesis. The complexity of the spatio-temporal expression of maternal transcripts in egg chambers allows for the exploration of a wide range of mechanisms that are crucial to the life cycle of mRNAs.

3.
Toxics ; 12(9)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39330586

ABSTRACT

The fruit fly, Drosophila melanogaster, is an experimentally tractable model system that has recently emerged as a powerful "new approach methodology" (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of Drosophila fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another, the RoboCam, a low-cost, custom-built robotic camera to capture images of the wells automatically, and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth). In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high-throughput egg-laying assays that require exposing flies to multiple different media conditions.

4.
Dev Biol ; 517: 91-99, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341446

ABSTRACT

Zebrafish sex differentiation is a complicated process and the detailed mechanism has not been fully understood. Here we characterized a transcription factor, Foxl2l, which participates in female oogenesis. We show that it is expressed specifically in proliferating germ cells in juvenile gonads and mature ovaries. We have used CRISPR-Cas9 to generate zebrafish deficient in foxl2l expression. Zebrafish with foxl2l-/- are all males, and this female-to-male sex reversal cannot be reversed by tp53 mutation, indicating this sex reversal is unrelated to cell death. We have generated transgenic fish expressing GFP under the control of foxl2l promoter to track the development of foxl2l + -germ cells; these cells failed to enter meiosis and accumulated as cystic cells in the foxl2l-/- mutant. Our RNA-seq analysis also showed the reduced expression of genes in meiosis and oogenesis among other affected pathways. All together, we show that zebrafish Foxl2l is a nuclear factor controlling the expression of meiotic and oogenic genes, and its deficiency leads to defective meiotic entry and the accumulation of premeiotic germ cells.

5.
bioRxiv ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39253424

ABSTRACT

The non-muscle actomyosin cytoskeleton generates contractile force through the dynamic rearrangement of its constituent parts. Actomyosin rings are a specialization of the non-muscle actomyosin cytoskeleton that drive cell shape changes during division, wound healing, and other events. Contractile rings throughout phylogeny and in a range of cellular contexts are built from conserved components including non-muscle myosin II (NMMII), actin filaments (F-actin), and crosslinking proteins. However, it is unknown whether diverse actomyosin rings close via a single unifying mechanism. To explore how contractile forces are generated by actomyosin rings, we studied three instances of ring closure within the common cytoplasm of the C. elegans oogenic germline: mitotic cytokinesis of germline stem cells (GSCs), apoptosis of meiotic compartments, and cellularization of oocytes. We found that each ring type closed with unique kinetics, protein density and abundance dynamics. These measurements suggested that the mechanism of contractile force generation varied across the subcellular contexts. Next, we formulated a physical model that related the forces generated by filament-filament interactions to the material properties of these rings that dictate the kinetics of their closure. Using this framework, we related the density of conserved cytoskeletal proteins anillin and NMMII to the kinematics of ring closure. We fitted model rings to in situ measurements to estimate parameters that are currently experimentally inaccessible, such as the asymmetric distribution of protein along the length of F-actin, which occurs naturally due to differences in the dimensions of the crosslinker and NMMII filaments. Our work predicted that the role of NMMII varies across these ring types, due in part to its distribution along F-actin and motoring. Our model also predicted that the degree of contractility and the impact of ring material properties on contractility differs among ring types.

6.
bioRxiv ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39253513

ABSTRACT

Nuclear actin has been implicated in regulating cell fate, differentiation, and cellular reprogramming. However, its roles in development and tissue homeostasis remain largely unknown. Here we uncover the role of nuclear actin in regulating stemness using Drosophila ovarian germline stem cells (GSCs) as a model. We find that the localization and structure of nuclear actin is dynamic in the early germ cells. Nuclear actin recognized by anti-actin C4 is found in both the nucleoplasm and nucleolus of GSCs. The polymeric nucleoplasmic C4 pool is lost after the 2-cell stage, whereas the monomeric nucleolar pool persists to the 8-cell stage, suggesting that polymeric nuclear actin may contribute to stemness. To test this idea, we overexpressed nuclear targeted actin constructs to alter nuclear actin polymerization states in the GSCs and early germ cells. Increasing monomeric nuclear actin, but not polymerizable nuclear actin, causes GSC loss that ultimately results in germline loss. This GSC loss is rescued by simultaneous overexpression of monomeric and polymerizable nuclear actin. Together these data reveal that GSC maintenance requires polymeric nuclear actin. This polymeric nuclear actin likely plays numerous roles in the GSCs, as increasing monomeric nuclear actin disrupts nuclear architecture causing nucleolar hypertrophy, distortion of the nuclear lamina, and heterochromatin reorganization; all factors critical for GSC maintenance and function. These data provide the first evidence that nuclear actin, and in particular, its ability to polymerize, are critical for stem cell function and tissue homeostasis in vivo.

7.
Arch Med Res ; 55(8): 103071, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236439

ABSTRACT

It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.

8.
Zool Res ; 45(5): 1116-1130, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39257375

ABSTRACT

Zebrafish serve as a valuable model organism for studying germ cell biology and reproductive processes. The AB strain of zebrafish is proposed to exhibit a polygenic sex determination system, where most males initially develop juvenile ovaries before committing to male fate. In species with chromosomal sex determination, gonadal somatic cells are recognized as key determinants of germ cell fate. Notably, the loss of germ cells in zebrafish leads to masculinization, implying that germ cells harbor an intrinsic feminization signal. However, the specific signal triggering oogenesis in zebrafish remains unclear. In the present study, we identified foxl2l as an oocyte progenitor-specific gene essential for initiating oogenesis in germ cells. Results showed that foxl2l-knockout zebrafish bypassed the juvenile ovary stage and exclusively developed into fertile males. Further analysis revealed that loss of foxl2l hindered the initiation of oocyte-specific meiosis and prevented entry into oogenesis, leading to premature spermatogenesis during early gonadal development. Furthermore, while mutation of the pro-male gene dmrt1 led to fertile female differentiation, simultaneous disruption of foxl2l in dmrt1 mutants completely blocked oogenesis, with a large proportion of germ cells arrested as germline stem cells, highlighting the crucial role of foxl2l in oogenesis. Overall, this study highlights the unique function of foxl2l as a germ cell-intrinsic gatekeeper of oogenesis in zebrafish.


Subject(s)
Oogenesis , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/physiology , Oogenesis/physiology , Oogenesis/genetics , Female , Male , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Germ Cells/physiology , Forkhead Box Protein L2/genetics , Forkhead Box Protein L2/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Spermatogenesis/physiology , Spermatogenesis/genetics , Oocytes/physiology
9.
Front Cell Dev Biol ; 12: 1436975, 2024.
Article in English | MEDLINE | ID: mdl-39224437

ABSTRACT

Caenorhabditis elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene region, the diplotene region, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq (scRNA-seq) protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the gonad and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we delineate transcripts that may serve functions in the interactions between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.

10.
Methods Mol Biol ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39120738

ABSTRACT

Macroautophagy (autophagy hereafter) is an evolutionarily conserved mechanism that maintains the health of cells by degrading toxic proteins and damaged organelles within the lysosomes. Tissues like ovary are made up of heterogeneous cell types and each cell type has distinct levels of autophagy. Studying autophagy in a cell-type specific manner helps better understand the role of autophagy during oogenesis. Here, we describe assays for monitoring autophagy during oogenesis in Drosophila using the two protein markers, Atg8a and Ref(2)P.

11.
J Fish Biol ; 105(4): 1298-1313, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39113396

ABSTRACT

Batch spawner fishes develop successive clutches of oocytes which allows them to participate in many reproductive cycles during their adult life (iteroparous) and spawn in multiple events within each breeding cycle. Here, ovarian follicular development was morpho-functionally analyzed in females of the iteroparous batch spawner fish Gymnocorymbus ternetzi. To obtain better insights into the reproductive morpho-physiology in batch spawners, the objective of this research was to analyze the dynamics of the follicular development, with its hormonal regulation between two active reproduction events. We found that over 16 days, follicles progressed asynchronously to chromatin nucleolus, Primary and Secondary growth stages of oogenesis with progressive secretion of 17ß-estradiol (E2). During the end of secondary growth, the increase in 17α,20ß-dihydroxy-4-pregnen-3-one (17,20ß-p) was measured relative to the maturation process of the ovarian follicles (e.g., nuclear migration and its rupture during the resumption of meiosis). Interestingly, an additional increase in E2 was observed after fish reproduction, probably related to the recruitment of new batch follicles for secondary growth. We also measured the high values of multiple condition factor post-reproduction measurements, reflecting more energy invested during the pre-reproductive process. We also quantified high concentrations of 17,20ß-p, probably related to the recruitment of a new batch of oogonia to meiosis, presumably secreted by post-ovulatory follicles, after fish reproduction. We finally found that fish without exposure to reproductive stimulus developed a regression phase at day 24, characterized by massive follicle atresia, that allow them to recycle energy and constitutive materials of the follicles invested during oogenesis for another reproductive cycle.


Subject(s)
Estradiol , Ovarian Follicle , Ovulation , Animals , Female , Ovarian Follicle/physiology , Estradiol/metabolism , Ovulation/physiology , Oogenesis/physiology , Reproduction , Hydroxyprogesterones
12.
Reprod Biol Endocrinol ; 22(1): 95, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095895

ABSTRACT

BACKGROUND: Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS: PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS: The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS: The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.


Subject(s)
Ovarian Follicle , Polyesters , Tissue Engineering , Tissue Scaffolds , Female , Ovarian Follicle/growth & development , Ovarian Follicle/cytology , Tissue Scaffolds/chemistry , Animals , Polyesters/chemistry , Tissue Engineering/methods , Sheep , Ovary/growth & development , Ovary/cytology , Oogenesis/physiology , Oogenesis/drug effects , Bioengineering/methods , Reproductive Techniques, Assisted , Fertilization in Vitro/methods
13.
Front Immunol ; 15: 1397633, 2024.
Article in English | MEDLINE | ID: mdl-39176081

ABSTRACT

Background: Unexplained recurrent pregnancy loss (URPL) is a clinical dilemma in reproductive fields. Its diagnosis is mainly exclusionary after extensive clinical examination, and some of the patients may still face the risk of miscarriage. Methods: We analyzed follicular fluid (FF) from in vitro fertilization (IVF) in eight patients with URPL without endocrine abnormalities or verifiable causes of abortion and eight secondary infertility controls with no history of pregnancy loss who had experienced at least one normal pregnancy and delivery by direct data-independent acquisition (dDIA) quantitative proteomics to identify differentially expressed proteins (DEPs). In this study, bioinformatics analysis was performed using online software including g:profiler, String, and ToppGene. Cytoscape was used to construct the protein-protein interaction (PPI) network, and ELISA was used for validation. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs are involved in the biological processes (BP) of complement and coagulation cascades. Apolipoproteins (APOs) are key proteins in the PPI network. ELISA confirmed that APOB was low-expressed in both the FF and peripheral blood of URPL patients. Conclusion: Dysregulation of the immune network intersecting coagulation and inflammatory response is an essential feature of URPL, and this disequilibrium exists as early as the oogenesis stage. Therefore, earlier intervention is necessary to prevent the development of URPL. Moreover, aberrant lipoprotein regulation appears to be a key factor contributing to URPL. The mechanism by which these factors are involved in the complement and coagulation cascade pathways remains to be further investigated, which also provides new candidate targets for URPL treatment.


Subject(s)
Abortion, Habitual , Lipid Metabolism , Oogenesis , Proteomics , Humans , Female , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Adult , Proteomics/methods , Pregnancy , Lipid Metabolism/genetics , Oogenesis/genetics , Protein Interaction Maps , Follicular Fluid/metabolism , Computational Biology/methods , Proteome , Fertilization in Vitro
14.
Curr Issues Mol Biol ; 46(8): 8710-8725, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39194731

ABSTRACT

Hollow structures are essential for development and physiological activity. The construction and maintenance of hollow structures never cease throughout the lives of multicellular animals. Epithelial tissue closure is the main strategy used by living organisms to build hollow structures. The high diversity of hollow structures and the simplicity of their development in Drosophila make it an excellent model for the study of hollow structure morphogenesis. In this review, we summarize the tissue closure processes in Drosophila that give rise to or maintain hollow structures and highlight the molecular mechanisms and distinct cell biology involved in these processes.

15.
Sci Total Environ ; 951: 175532, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153614

ABSTRACT

Microcystin-LR (MCLR) produced by cyanobacterial blooms have received global attention. MCLR has been recognized as a reproductive toxin to fish and poses a threat to ecosystem stability. It has been proven that probiotic dietary management can improve reproductive performance of fish. It is worth paying attention to exploring whether probiotic management can alleviate the reproductive toxicity caused by MCLR. In this investigation, adult zebrafish were exposed to different doses of MCLR solution (0, 2.2, and 22 µg/L) with or without the Lactobacillus rhamnosus GG supplementation for a duration of 28 days. The results showed that female zebrafish spawning was reduced after exposure to MCLR, but this reduction was reversed when L. rhamnosus GG was added. To elucidate how L. rhamnosus GG mitigates reproductive toxicity caused by MCLR, we examined a series of indicators of MCLR accumulation, ovarian histology, hormones, and transcriptome levels. Our study showed that L. rhamnosus GG could alleviate oogenesis disorders and ultimately attenuate MCLR-induced reproductive toxicity by reducing MCLR accumulation in the gonads, modulating the expression of endocrine system and auto/paracrine factors. The transcriptome results revealed that single or combined exposure of MCLR and L. rhamnosus GG mainly affected the endocrine system, energy metabolism, and RNA degradation and translation. Overall, our results provide new insights for alleviating MCLR-induced reproductive toxicity and help promote healthy aquaculture.


Subject(s)
Lacticaseibacillus rhamnosus , Marine Toxins , Microcystins , Oogenesis , Probiotics , Transcriptome , Zebrafish , Animals , Zebrafish/physiology , Lacticaseibacillus rhamnosus/physiology , Oogenesis/drug effects , Female , Microcystins/toxicity , Water Pollutants, Chemical/toxicity , Reproduction/drug effects
16.
Development ; 151(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39190553

ABSTRACT

The size of subcellular structures must be tightly controlled to maintain normal cell function. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during development, when cells are growing, dividing and rearranging. The developing Drosophila egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of 16 germline cells, which are connected through intercellular bridges called ring canals. As the egg chamber grows, the germline cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to lineage; the largest, 'first-born' ring canals increase in size at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or in egg chambers with twice as many germline cells. Analysis of lines that produce larger or smaller mature eggs reveals that different strategies could be used to alter final egg size.


Subject(s)
Cell Lineage , Germ Cells , Oogenesis , Animals , Oogenesis/physiology , Female , Germ Cells/cytology , Drosophila melanogaster , Drosophila , Ovum/cytology , Cell Size
17.
Ecotoxicol Environ Saf ; 281: 116651, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959790

ABSTRACT

Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.


Subject(s)
Betamethasone , Oryzias , Ovary , Reproduction , Water Pollutants, Chemical , Animals , Oryzias/physiology , Female , Betamethasone/toxicity , Water Pollutants, Chemical/toxicity , Reproduction/drug effects , Ovary/drug effects , Pituitary Gland/drug effects , Fertility/drug effects , Oogenesis/drug effects , Environmental Exposure , Gonadal Steroid Hormones
18.
Dev Biol ; 515: 139-150, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39038593

ABSTRACT

Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Germ Cells , Homeostasis , Nuclear Lamina , Stem Cells , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Female , Germ Cells/metabolism , Drosophila melanogaster/metabolism , Stem Cells/metabolism , Nuclear Lamina/metabolism , Cell Nucleus/metabolism , Cell Proliferation , Drosophila/metabolism , Nuclear Envelope/metabolism
19.
Genetics ; 228(2)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39028799

ABSTRACT

RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Fertility , Oocytes , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Fertility/genetics , Oocytes/metabolism , Oogenesis/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA Editing , Female , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Spermatogenesis/genetics , Male
20.
Sci Rep ; 14(1): 17016, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39043811

ABSTRACT

As the most numerous group of animals on Earth, insects are found in almost every ecosystem. Their useful role in the environment is priceless; however, for humans, their presence may be considered negative or even harmful. For years, people have been trying to control the number of pests by using synthetic insecticides, which eventually causes an increased level of resistance to applied compounds. The effects of synthetic insecticides have encouraged researchers to search for alternatives and thus develop safe compounds with high specificity. Using knowledge about the physiology of insects and the functionality of compounds of insect origin, a new class of bioinsecticides called peptidomimetics, which are appropriately modified insect analogues, was created. One promising compound that might be successfully modified is the thirteen amino acid peptide alloferon (HGVSGHGQHGVHG), which is obtained from the hemolymph of the blue blowfly Calliphora vicinia. Our research aimed to understand the physiological properties of alloferon and the activity of its peptidomimetics, which will provide the possibility of using alloferon or its analogues in the pharmaceutical industry, as a drug or adjuvant, or in agriculture as a bioinsecticide. We used alloferon and its three peptidomimetics, which are conjugates of the native peptide with three unsaturated fatty acids with various chain lengths: caprylic, myristic, and palmitic. We tested their effects on the morphology and activity of the reproductive system and the embryogenesis of the Tenebrio molitor beetle. We found that the tested compounds influenced the growth and maturation of ovaries and the expression level of the vitellogenin gene. The tested compounds also influenced the process of egg laying, embryogenesis, and offspring hatching, showing that alloferon might be a good peptide for the synthesis of effective bioinsecticides or biopharmaceuticals.


Subject(s)
Reproduction , Tenebrio , Animals , Tenebrio/drug effects , Reproduction/drug effects , Female , Insecticides/pharmacology , Insecticides/chemistry , Male , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Hemolymph/metabolism , Hemolymph/drug effects , Peptides/pharmacology , Peptides/chemistry , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL