Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 116881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917757

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected disease caused by Leishmania parasites. The oral drug miltefosine is effective, but there is a growing problem of drug resistance, which has led to increasing treatment failure rates and relapse of infections. Photodynamic therapy (PDT) combines a light source and a photoactive drug to promote cell death by oxidative stress. Although PDT is effective against several pathogens, its use against drug-resistant Leishmania parasites remains unexplored. Herein, we investigated the potential of organic light-emitting diodes (OLEDs) as wearable light sources, which would enable at-home use or ambulatory treatment of CL. We also assessed its impact on combating miltefosine resistance in Leishmania amazonensis-induced CL in mice. The in vitro activity of OLEDs combined with 1,9-dimethyl-methylene blue (DMMB) (OLED-PDT) was evaluated against wild-type and miltefosine-resistant L. amazonensis strains in promastigote (EC50 = 0.034 µM for both strains) and amastigote forms (EC50 = 0.052 µM and 0.077 µM, respectively). Cytotoxicity in macrophages and fibroblasts was also evaluated. In vivo, we investigated the potential of OLED-PDT in combination with miltefosine using different protocols. Our results demonstrate that OLED-PDT is effective in killing both strains of L. amazonensis by increasing reactive oxygen species and stimulating nitric oxide production. Moreover, OLED-PDT showed great antileishmanial activity in vivo, allowing the reduction of miltefosine dose by half in infected mice using a light dose of 7.8 J/cm2 and 15 µM DMMB concentration. In conclusion, OLED-PDT emerges as a new avenue for at-home care and allows a combination therapy to overcome drug resistance in cutaneous leishmaniasis.


Subject(s)
Drug Resistance , Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Phosphorylcholine , Photochemotherapy , Animals , Photochemotherapy/methods , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Female , Leishmania/drug effects , Macrophages/parasitology , Macrophages/drug effects , Macrophages/metabolism
2.
Chempluschem ; 88(11): e202300539, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801036

ABSTRACT

Three tetraaryl-1,4-dihydropyrrolo[3,2-b]pyrrole derivatives containing different number of long alkoxy chains (2, 4 and 6) were synthesized, characterized and applied in Organic Light Emitting Diodes (OLEDs). The compounds showed good emission properties with Photoluminescence Quantum Yields (PLQYs) higher than 80 % in solution and 50 % in solid state (thin film). The solvatochromism results revealed a pronounced vibronic emission in methylcyclohexane and toluene, characterized by two distinct sharp emission peaks and a small redshift in the following order: methylcyclohexane>toluene>dichloromethane>tetrahydrofuran>acetonitrile. Also, the compounds formed aggregates with redshifted emission, which can be attributed to excimer formation. This phenomenon was observed in solutions containing 90 % water and with the concentration variation in methylcyclohexane (MCH). Compounds with a greater number of peripheral chains showed the capacity to keep hexagonal columnar organization in films after fast cooling from liquid state. OLEDs fabricated with these compounds showed turn-on voltages lower than 4.0 V, with luminance higher than 1400 cd m-2 , electroluminescence spectra with Full Width at Half Maximum lower than 70 nm and maximum External Quantum Efficiency between 7.2 % and 4.3 %. Overall, this shows that the 1,4-dihydropyrrolo[3,2-b]pyrrole moiety is promising for applications where luminescence is paramount, as in organic light-emitting devices.

SELECTION OF CITATIONS
SEARCH DETAIL