Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
1.
Med Biol Eng Comput ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365519

ABSTRACT

Segmentation of organs at risks (OARs) in the thorax plays a critical role in radiation therapy for lung and esophageal cancer. Although automatic segmentation of OARs has been extensively studied, it remains challenging due to the varying sizes and shapes of organs, as well as the low contrast between the target and background. This paper proposes a cascaded FAS-UNet+ framework, which integrates convolutional neural networks and nonlinear multi-grid theory to solve a modified Mumford-shah model for segmenting OARs. This framework is equipped with an enhanced iteration block, a coarse-to-fine multiscale architecture, an iterative optimization strategy, and a model ensemble technique. The enhanced iteration block aims to extract multiscale features, while the cascade module is used to refine coarse segmentation predictions. The iterative optimization strategy improves the network parameters to avoid unfavorable local minima. An efficient data augmentation method is also developed to train the network, which significantly improves its performance. During the prediction stage, a weighted ensemble technique combines predictions from multiple models to refine the final segmentation. The proposed cascaded FAS-UNet+ framework was evaluated on the SegTHOR dataset, and the results demonstrate significant improvements in Dice score and Hausdorff Distance (HD). The Dice scores were 95.22%, 95.68%, and HD values were 0.1024, and 0.1194 for the segmentations of the aorta and heart in the official unlabeled dataset, respectively. Our code and trained models are available at https://github.com/zhuhui100/C-FASUNet-plus .

2.
Oncol Lett ; 28(5): 539, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39310024

ABSTRACT

Delineating the clinical target volume (CTV) and organs at risk (OARs) is crucial in rectal cancer radiotherapy. However, the accuracy of manual delineation (MD) is variable and the process is time consuming. Automatic delineation (AD) may be a solution to produce quicker and more accurate contours. In the present study, a convolutional neural network (CNN)-based AD tool was clinically evaluated to analyze its accuracy and efficiency in rectal cancer. CT images were collected from 148 supine patients in whom tumor stage and type of surgery were not differentiated. The rectal cancer contours consisted of CTV and OARs, where the OARs included the bladder, left and right femoral head, left and right kidney, spinal cord and bowel bag. The MD contours reviewed and modified together by a senior radiation oncologist committee were set as the reference values. The Dice similarity coefficient (DSC), Jaccard coefficient (JAC) and Hausdorff distance (HD) were used to evaluate the AD accuracy. The correlation between CT slice number and AD accuracy was analyzed, and the AD accuracy for different contour numbers was compared. The time recorded in the present study included the MD time, AD time for different CT slice and contour numbers and the editing time for AD contours. The Pearson correlation coefficient, paired-sample t-test and unpaired-sample t-test were used for statistical analyses. The results of the present study indicated that the DSC, JAC and HD for CTV using AD were 0.80±0.06, 0.67±0.08 and 6.96±2.45 mm, respectively. Among the OARs, the highest DSC and JAC using AD were found for the right and left kidney, with 0.91±0.06 and 0.93±0.04, and 0.84±0.09 and 0.88±0.07, respectively, and HD was lowest for the spinal cord with 2.26±0.82 mm. The lowest accuracy was found for the bowel bag. The more CT slice numbers, the higher the accuracy of the spinal cord analysis. However, the contour number had no effect on AD accuracy. To obtain qualified contours, the AD time plus editing time was 662.97±195.57 sec, while the MD time was 3294.29±824.70 sec. In conclusion, the results of the present study indicate that AD can significantly improve efficiency and a higher number of CT slices and contours can reduce AD efficiency. The AD tool provides acceptable CTV and OARs for rectal cancer and improves efficiency for delineation.

3.
Phys Imaging Radiat Oncol ; 31: 100634, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39286771

ABSTRACT

Background and purpose: Intensity modulated proton therapy (IMPT) enables generation of conformal dose plans with organ at risk (OAR) sparing potential. However, pelvic IMPT robustness is challenged by inter-fraction motion caused by constant anatomical variations. In this study, the dosimetric impact of inter-fraction motion on target coverage and dose to OAR was quantified in the prospective phase II study ReRad-II on dose-escalated proton reirradiation for locally recurrent rectal cancer (LRRC). Materials and methods: The inter-fraction motion robustness was assessed for the initial twelve patients enrolled in the ReRad-II study. Patients with resectable LRRC were assessed for neoadjuvant IMPT (55 Gy(RBE)/44Fx) and unresectable recurrences for definitive IMPT (57.5-65 Gy(RBE)/ 46-52Fx). Target coverage and dose to OAR were assessed for robustly optimised three-field IMPT, on 12 plan computerized tomography (CT) scans (pCT) - and 47 repetitive control CT scans (cCTs) during the treatment. The target coverage and doses to OAR were re-calculated on each cCT and the mean dose ratio (pCT/cCT-ratio) and target coverage (V95%) was evaluated. Results: The target coverage was robust with a mean dose pCT/cCT-ratio of 1.00 (+/-1%). The V95% target coverage for every cCT were above the accepted worst-case scenario in the robust evaluation. Considerable variation in bladder-, bowel bag-, and bowel loop volume was observed. The OAR with the largest variation in ratio was the bladder (pCT/cCT-ratio: 1.3 (range: 0.5-4.7). Conclusions: IMPT for dose-escalated reirradiation of LRRC provided anatomically robust target coverage despite OAR changes. Inter-fraction motion resulted in OAR doses varying within clinically acceptable range.

4.
Thorac Cancer ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39275876

ABSTRACT

Radiotherapy is a crucial component in the holistic management of breast cancer, with approximately 60% of individuals diagnosed with breast cancer requiring this treatment. As the survival rate of individuals with breast cancer has significantly increased, there is a growing focus on the long-term well-being of patients. Proton therapy (PT) is a new and rapidly developing radiotherapy method. In comparison with conventional photon therapy, PT offers the benefits of decreased radiation toxicity and increased dosage in the designated region. This can extend patients' lifespan and enhance their overall well-being. The present analysis examines the function of PT in diminishing the harmful effects of radiation in cases of breast cancer, while also providing a brief overview of the future potential and obstacles associated with PT for breast cancer.

5.
J Appl Clin Med Phys ; : e14513, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284283

ABSTRACT

PURPOSE: We have built a novel AI-driven QA method called AutoConfidence (ACo), to estimate segmentation confidence on a per-voxel basis without gold standard segmentations, enabling robust, efficient review of automated segmentation (AS). We have demonstrated this method in brain OAR AS on MRI, using internal and external (third-party) AS models. METHODS: Thirty-two retrospectives, MRI planned, glioma cases were randomly selected from a local clinical cohort for ACo training. A generator was trained adversarialy to produce internal autosegmentations (IAS) with a discriminator to estimate voxel-wise IAS uncertainty, given the input MRI. Confidence maps for each proposed segmentation were produced for operator use in AS editing and were compared with "difference to gold-standard" error maps. Nine cases were used for testing ACo performance on IAS and validation with two external deep learning segmentation model predictions [external model with low-quality AS (EM-LQ) and external model with high-quality AS (EM-HQ)]. Matthew's correlation coefficient (MCC), false-positive rate (FPR), false-negative rate (FNR), and visual assessment were used for evaluation. Edge removal and geometric distance corrections were applied to achieve more useful and clinically relevant confidence maps and performance metrics. RESULTS: ACo showed generally excellent performance on both internal and external segmentations, across all OARs (except lenses). MCC was higher on IAS and low-quality external segmentations (EM-LQ) than high-quality ones (EM-HQ). On IAS and EM-LQ, average MCC (excluding lenses) varied from 0.6 to 0.9, while average FPR and FNR were ≤0.13 and ≤0.21, respectively. For EM-HQ, average MCC varied from 0.4 to 0.8, while average FPR and FNR were ≤0.37 and ≤0.22, respectively. CONCLUSION: ACo was a reliable predictor of uncertainty and errors on AS generated both internally and externally, demonstrating its potential as an independent, reference-free QA tool, which could help operators deliver robust, efficient autosegmentation in the radiotherapy clinic.

6.
Rep Pract Oncol Radiother ; 29(3): 348-356, 2024.
Article in English | MEDLINE | ID: mdl-39144264

ABSTRACT

Background: Definitive concurrent chemoradiotherapy (CRT) is the standard of care in advanced stages of head and neck cancer (HNC). With evident increase in survival rate there is also simultaneous increase in toxicity affecting the quality of life. One of the less researched late toxicity is radiation induced brachial plexopathy (RIBP). In this dosimetric study we intent to contour the brachial plexus (BP) as an organ at risk (OAR) and determine the factors that contribute to dose variations to BP, and clinically evaluate the patients for RIBP during follow-up using a questionnaire. Materials and methods: 30 patients with HNC planned for CRT from September 2020 to June 2022 were accrued. Patients were treated to a dose of 6600 cGy with intensity modulated radiotherapy using the simultaneous integrated boost technique. From the dose-volume histogram (DVH) statistics the BP volume, Dmax and other parameters like V66, V60 were assessed and was correlated with respect to primary tumour and nodal stage. Results: On corelation, more than the T stage, the N stage and the primary location had a significant impact on the Dmax. With a median follow-up of 17.9 months, the incidence of RIBP was 6.67%. The 2-year disease free survival and the 2-year overall survival were 53.7% and 59.4%, respectively. Conclusions: In oropharyngeal/hypopharyngeal primaries and in advanced nodal disease, BP receives higher doses contributing to RIBP. Primary tumor and nodal stage also impacted V60 and V66 of BP. Hence, contouring of BP as an OAR becomes imperative, and respecting the DVH parameters is essential.

7.
Rep Pract Oncol Radiother ; 29(3): 300-308, 2024.
Article in English | MEDLINE | ID: mdl-39144272

ABSTRACT

Background: Task Group 43 (TG-43) formalism does not consider the tissue and applicator heterogeneities. This study is to compare the effect of model-based dose calculation algorithms, like Advanced Collapsed Cone Engine (ACE), on dose calculation with the TG-43 dose calculation formalism in patients with cervical carcinoma. Materials and methods: 20 patients of cervical carcinoma treated with a high dose rate of intracavitary brachytherapy were prospectively studied. The target volume and organs at risk (OARs) were contoured in the Oncentra treatment planning system (Elekta, Veenendaal, The Netherlands). All patients were planned with cobalt-60 (Co-60) and iridium-192 (Ir-192) sources with doses of 21 Gy in 3 fractions. These plans were calculated with TG-43 formalism and a model-based dose calculation algorithm ACE. The dosimetric parameters of TG-43 and ACE-based plans were compared in terms of target coverage and OAR doses. Results: For Co-60-based plans, the percentage differences in the D90 and V100 values for high-risk clinical target volume (HR-CTV) were 0.36 ± 0.43% and 0.17 ± 0.31%, respectively. For the bladder, rectum and sigmoid, the percentage differences for D2cc volumes were -0.50 ± 0.51%, -0.16 ± 0.53% and -0.37 ± 1.21%, respectively. For Ir-192-based plans, the percentage difference in the D90 for HR-CTV was 0.54 ± 0.79%, while V100 was 0.24 ± 0.29%. For the bladder, rectum and sigmoid, the doses to 2cc volume were 0.35 ± 1.06%, 0.99 ± 0.74% and 0.74 ± 1.92%, respectively. No significant differences were found in the dosimetric parameters calculated with ACE and TG-43. Conclusion: The ACE algorithm reduced doses to OARs and targets. However, ACE and TG-43 did not show significant differences in the dosimetric parameters of the target and OARs with both sources.

8.
Klin Onkol ; 38(1): 10-19, 2024.
Article in English | MEDLINE | ID: mdl-39183546

ABSTRACT

BACKGROUND: Cardiovascular diseases represent the most common non-oncologic cause of death in patients following radiotherapy (RT) in the thoracic region. Radiation-induced heart disease (RIHD) can manifest as various heterogeneous clinical entities. However, the influence of RT on the cardiac conduction system has only recently gained more attention. Arrhythmogenic toxicity, i.e., conduction disorders and arrhythmias, constitutes a significant part of these adverse effects. The cardiac conduction system is not routinely monitored as an organ at risk (OaR). Its specific histological nature and function suggest different sensitivity and response to radiation. The heart is a highly heterogeneous organ, and the routinely monitored dose to the whole heart may not adequately characterize the risk of increased arrhythmogenic toxicity from RT. Cardiac structures, including the conduction system, appear to be additional OaRs for which dose distribution should be monitored. MATERIAL AND METHODS: For the systematic selection of studies, we utilized the PubMed database with keywords derived from the analysis of existing literature. The search was limited to English-language publications, and the selection criteria included relevance to the topic and the quality of methodology. PURPOSE: This article summarizes the impact of RT on the cardiac conduction system. CONCLUSION: Radiotherapy-induced cardiotoxicity significantly affects morbidity and mortality. The heart exhibits heterogeneity in terms of radiosensitivity. Certain cardiac subregions in the dose distribution show a higher correlation with poorer overall survival than routinely monitored doses to the whole heart and derived parameters (the volumes irradiated with the doses of 5 or 30 Gy - V5 or V30, respectively). The most radiosensitive subregions appear to be the base of the heart, including the beginning of the conduction system. Higher doses to the conduction system, especially the sinoatrial (SA) node, are associated with a higher incidence of a wide range of arrhythmias and poorer overall survival. However, dose limits (Dmean and Dmax) for the conduction system have not yet been established. Dosimetric studies have identified cutoff doses to the SA node, exceeding which there is a significant increase in mortality and the occurrence of arrhythmias.


Subject(s)
Heart Conduction System , Humans , Heart Conduction System/radiation effects , Heart Conduction System/physiopathology , Radiotherapy/adverse effects , Organs at Risk/radiation effects , Arrhythmias, Cardiac/etiology , Radiation Injuries/etiology
9.
Diagnostics (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125508

ABSTRACT

This study aimed to determine the relationship between geometric and dosimetric agreement metrics in head and neck (H&N) cancer radiotherapy plans. A total 287 plans were retrospectively analyzed, comparing auto-contoured and clinically used contours using a Dice similarity coefficient (DSC), surface DSC (sDSC), and Hausdorff distance (HD). Organs-at-risk (OARs) with ≥200 cGy dose differences from the clinical contour in terms of Dmax (D0.01cc) and Dmean were further examined against proximity to the planning target volume (PTV). A secondary set of 91 plans from multiple institutions validated these findings. For 4995 contour pairs across 19 OARs, 90% had a DSC, sDSC, and HD of at least 0.75, 0.86, and less than 7.65 mm, respectively. Dosimetrically, the absolute difference between the two contour sets was <200 cGy for 95% of OARs in terms of Dmax and 96% in terms of Dmean. In total, 97% of OARs exhibiting significant dose differences between the clinically edited contour and auto-contour were within 2.5 cm PTV regardless of geometric agreement. There was an approximately linear trend between geometric agreement and identifying at least 200 cGy dose differences, with higher geometric agreement corresponding to a lower fraction of cases being identified. Analysis of the secondary dataset validated these findings. Geometric indices are approximate indicators of contour quality and identify contours exhibiting significant dosimetric discordance. For a small subset of OARs within 2.5 cm of the PTV, geometric agreement metrics can be misleading in terms of contour quality.

10.
Pediatr Blood Cancer ; 71(9): e31164, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38953144

ABSTRACT

BACKGROUND: Organs at risk (OAR) dose reporting for total body irradiation (TBI) patients is limited, and standardly reported only as mean doses to the lungs and kidneys. Consequently, dose received and effects on other OAR remain unexplored. To remedy this gap, this study reports dose data on an extensive list of OAR for patients treated at a single institution using the modulated arc total body irradiation (MATBI) technique. METHOD: An audit was undertaken of all patients treated with MATBI between January 2015 and March 2021 who had completed their course of treatment. OAR were contoured on MATBI patient treatment plans, with 12 Gy in six fraction prescription. OAR dose statistics and dose volume histogram data are reported for the whole body, lungs, kidneys, bones, brain, lens, heart, liver and bowel bag. RESULTS: The OAR dose data for 29 patients are reported. Mean dose results are body 11.77 Gy, lungs 9.86 Gy, kidneys 11.84 Gy, bones 12.03 Gy, brain 12.12 Gy, right lens 12.31 Gy, left lens 12.64 Gy, heart 11.07 Gy, liver 11.81 Gy and bowel bag 12.06 Gy. Dose statistics at 1-Gy intervals of V6-V13 for lungs and V10-V13 for kidneys are also included. CONCLUSION: This is the first time an extensive list of OAR data has been reported for any TBI technique. Due to the paucity of reporting, this information could be used by centres implementing the MATBI technique, in addition to aiding comparison between TBI techniques, with the potential for greater understanding of the relationship between dose volume data and toxicity.


Subject(s)
Organs at Risk , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Whole-Body Irradiation , Humans , Organs at Risk/radiation effects , Whole-Body Irradiation/methods , Child , Male , Female , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Child, Preschool , Adolescent , Radiotherapy Planning, Computer-Assisted/methods , Infant , Adult , Follow-Up Studies , Prognosis , Young Adult
11.
Phys Med ; 123: 103427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959576

ABSTRACT

BACKGROUND: Reirradiation of head and neck cancer (HNC) became more accessible in the last decade, owing to modern irradiation techniques which offer a reduction in treatment related toxicities. The aim of this paper was to comparatively evaluate the dosimetric aspects derived from intensity modulated photon vs. proton treatment planning in reirradiated HNC patients. METHODS: Six recurrent HNC patients were enrolled in this retrospective study. For each patient two treatment plans were created: one IMRT/VMAT and one IMPT plan. The prescribed dose for the second irradiation was between 50 and 70 Gy RBE. The study comparatively analyzed the CTV coverage, doses to organs at risk (OARs) and low doses received by the healthy tissue (other than OAR). RESULTS: Similar CTV coverage was achieved for photon vs proton plans, with the latter presenting better homogeneity in four cases. Maximum dose to CTV was generally higher for photon plans, with differences ranging from 0.3 to 1.9%. For parotid glands and body, the mean dose was lower for proton plans. A notable reduction of low dose to healthy tissue (other than OARs) could be achieved with protons, with an average of 60% and 64% for D10% and Dmean, respectively. CONCLUSION: The dosimetric comparison between photon and proton reirradiation of HNC showed a great need for treatment individualization, concluding that protons should be considered for reirradiation on an individual basis.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Photons , Proton Therapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Re-Irradiation , Humans , Head and Neck Neoplasms/radiotherapy , Proton Therapy/methods , Photons/therapeutic use , Radiotherapy, Intensity-Modulated/methods , Re-Irradiation/methods , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Retrospective Studies
12.
Radiother Oncol ; 198: 110410, 2024 09.
Article in English | MEDLINE | ID: mdl-38917883

ABSTRACT

BACKGROUND AND PURPOSE: To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge. MATERIALS AND METHODS: The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD95), and statistical ranking was applied for each metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. RESULTS: While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The top-performing team achieved a DSC of 76.9 % and a HD95 of 3.5 mm. All participating teams utilized architectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network entry-level concatenation of both modalities. CONCLUSION: This challenge simulated a real-world clinical scenario by providing non-registered MR and CT images with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for future research on this publicly available dataset and on paired multi-modal image segmentation in general.


Subject(s)
Head and Neck Neoplasms , Magnetic Resonance Imaging , Organs at Risk , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods
13.
Cureus ; 16(5): e59583, 2024 May.
Article in English | MEDLINE | ID: mdl-38832195

ABSTRACT

Novel hybrid approaches for chest wall irradiation show promising outcomes regarding target coverage and sparing organs at risk (OARs). In this systematic review, we compared hybrid volumetric modulated arc therapy (H-VMAT) or hybrid intensity-modulated radiotherapy (H-IMRT) techniques with non-hybrid techniques, such as three-dimensional conformal radiation therapy (3DCRT), field-in-field (FIF), intensity-modulated arc therapy (IMRT), and volumetric modulated arc therapy (VMAT), for breast cancer patients with mastectomy. Our focus was the plan quality and dose distribution to the OARs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist, we performed a systematic review and quality appraisal of primary studies evaluating hybrid therapy to the chest wall and the OARs. An extensive online search of PubMed and Scopus databases was conducted using appropriate keywords. The dose to the OARs (lung, heart, and contralateral breast), planning target volume (PTV), homogeneity index (HI), and conformity index (CI) were extracted. The data were then tabulated and compared for the outcomes between modalities among the studies. Nine studies that met the search criteria were selected to evaluate the PTV coverage and dosimetric results of hybrid and non-hybrid techniques. In terms of 95% PTV coverage, among nine reviewed studies, the largest difference between the two techniques was between VMAT (47.6 Gy) and H-VMAT (48.4 Gy); for the conformity index, the largest difference was noted between 3DCRT (0.58) and H-VMAT (0.79). In both cases, differences were statistically significant (P < 0.005). Two studies showed dose homogeneity improvement within the treatment target in H-VMAT (0.15 and 0.07) compared with 3DCRT (0.41 and 0.12), with a P value of <0.001. Two studies did not report on the homogeneity index, and three others observed no statistical difference. Regarding OARs, in the comparison of H-VMAT and VMAT, the largest significant change was in the volume receiving 5 Gy (V5Gy) of the ipsilateral lung and the V10Gy of the contralateral lung. For the ipsilateral lung, V5Gy was 90.7% with VMAT versus 51.45% with H-VMAT. For the contralateral lung, V10Gy was 54.9% with VMAT versus 50.5% with H-VMAT. In six studies, the mean dose of the contralateral breast was lower in hybrid techniques than in single modalities: VMAT (4.2%, 6.0%, 1.9%, 7.1%, 4.57%) versus H-VMAT (1.4%, 3.4%, 1.8%, 3.5%, 2.34%) and IMRT (9.1%) versus H-IMRT (4.69%). Although most studies did not report on monitor units and treatment time, those that included them showed that hybrids had lower monitor units and shorter treatment times. Hybrid techniques in radiotherapy, such as combining two modalities, can indeed facilitate lower doses to OARs for patients with a high risk of toxicities. Prospective clinical studies are needed to determine the outcomes of breast cancer treated with hybrid techniques.

14.
Front Oncol ; 14: 1335623, 2024.
Article in English | MEDLINE | ID: mdl-38800394

ABSTRACT

Purpose: Differences in the contours created during magnetic resonance imaging-guided online adaptive radiotherapy (MRgOART) affect dose distribution. This study evaluated the interobserver error in delineating the organs at risk (OARs) in patients with pancreatic cancer treated with MRgOART. Moreover, we explored the effectiveness of drugs that could suppress peristalsis in restraining intra-fractional motion by evaluating OAR visualization in multiple patients. Methods: This study enrolled three patients who underwent MRgOART for pancreatic cancer. The study cohort was classified into three conditions based on the MRI sequence and butylscopolamine administration (Buscopan): 1, T2 imaging without butylscopolamine administration; 2, T2 imaging with butylscopolamine administration; and 3, multi-contrast imaging with butylscopolamine administration. Four blinded observers visualized the OARs (stomach, duodenum, small intestine, and large intestine) on MR images acquired during the initial and final MRgOART sessions. The contour was delineated on a slice area of ±2 cm surrounding the planning target volume. The dice similarity coefficient (DSC) was used to evaluate the contour. Moreover, the OARs were visualized on both MR images acquired before and after the contour delineation process during MRgOART to evaluate whether peristalsis could be suppressed. The DSC was calculated for each OAR. Results: Interobserver errors in the OARs (stomach, duodenum, small intestine, large intestine) for the three conditions were 0.636, 0.418, 0.676, and 0.806; 0.725, 0.635, 0.762, and 0.821; and 0.841, 0.677, 0.762, and 0.807, respectively. The DSC was higher in all conditions with butylscopolamine administration compared with those without it, except for the stomach in condition 2, as observed in the last session of MR image. The DSCs for OARs (stomach, duodenum, small intestine, large intestine) extracted before and after contouring were 0.86, 0.78, 0.88, and 0.87; 0.97, 0.94, 0.90, and 0.94; and 0.94, 0.86, 0.89, and 0.91 for conditions 1, 2, and 3, respectively. Conclusion: Butylscopolamine effectively reduced interobserver error and intra-fractional motion during the MRgOART treatment.

15.
J Contemp Brachytherapy ; 16(1): 28-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38584889

ABSTRACT

Purpose: The aim of the study was to dosimetrically compare intra-cavitary brachytherapy technique (ICBT) with free-hand (intra-cavitary + interstitial, IC + IS) technique. Material and methods: Twenty seven locally advanced carcinoma cervix patients were included in the study. Patients with more than medial 1/3rd parametrial residual disease without extending upto lateral pelvic wall were included, following external beam radiotherapy (EBRT), in which cobalt-60 high-dose-rate (60Co HDR) brachytherapy source was used. Dose for both plans were 6.5 Gy × 4 fractions, 2 fractions per day, 6 hours apart, over 2 days. Free-hand brachytherapy technique, consisted of placement of central tandem and 2 ovoids along with needles without using template, was applied. Two plans were generated by activating and deactivating the needles, and compared by normalizing to V100. Results: A total of 79 needles were applied. Using paired-t test, dosimetric comparison of both the plans was done. Free-hand plan had a significant higher mean V90 (volume receiving 90% of the dose) of 94.2% compared with 87.22% in ICBT plan (p ≤ 0.0001). Free-hand and ICBT plans presented a mean V100 values of 89.06% and 81.51% (p ≤ 0.0001), respectively, favoring free-hand plan. The mean D90 (dose to 90% volume), D98, and D100 of free-hand plan were 6.28 Gray (Gy), 4.91 Gy, and 3.62 Gy, respectively, but equivalent parameters in ICBT plan were 5.26 Gy, 3.72 Gy, and 2.61 Gy, with p value ≤ 0.0001. In both the plans, D2cc of the bladder, rectum, and sigmoid were 4.59 Gy, 3.98 Gy, 2.77 Gy, and 4.46 Gy, 3.90 Gy, 2.67 Gy, respectively, with no statistical significance. Conclusions: Free-hand brachytherapy (IC + IS) achieves a statistically significant better dose distribution to high-risk clinical target volume (HR-CTV) comparing with ICBT technique with similar dose to organs at risk.

16.
J Appl Clin Med Phys ; 25(5): e14345, 2024 May.
Article in English | MEDLINE | ID: mdl-38664894

ABSTRACT

PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD: CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS: Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS: Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.


Subject(s)
Brain Neoplasms , Deep Learning , Magnetic Resonance Imaging , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Humans , Organs at Risk/radiation effects , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods , Image Processing, Computer-Assisted/methods
17.
Clin Transl Radiat Oncol ; 46: 100752, 2024 May.
Article in English | MEDLINE | ID: mdl-38425691

ABSTRACT

Background: Advances in local and systemic therapies have improved the outcomes of patients with breast cancer (BC), leading to a possible increased risk for postoperative radiation therapy (RT) late adverse events. The most adequate technologies and dose constraints for organs at risk (OAR) in BC RT have yet to be defined. Methods: An online survey was distributed to radiation oncologists (ROs) practicing in Europe and Latin America including the Caribbean (LAC) through personal contacts, RO and BC professional groups' networks. Demographic data and clinical practice information were collected. Results:  The study included 585 responses from ROs practicing in 57 different countries. The most frequently contoured OAR by European and LAC participants were the whole heart (96.6 % and 97.7 %), the ipsilateral (84.3 % and 90.8 %), and contralateral lung (71.3 % and 77.4 %), whole lung (69.8 % and 72.9 %), and the contralateral breast (66.4 % and. 83.2 %). ESTRO guidelines were preferred in Europe (33.3 %) and the RTOG contouring guideline was the most popular in LAC (62.2 %), while some participants used both recommendations (13.2 % and 19.2 %). IMRT (68.6 % and 59.1 %) and VMAT (65.6 % and 60.2 %) were the preferred modalities used in heart sparing strategies, followed by deep inspiration breath-hold (DIBH) (54.8 % and 37.4 %) and partial breast irradiation (PBI) (41.6 % and 24.6 %). Only a small percentage of all ROs reported the dose-volume constraints for OAR used in routine clinical practice. A mean heart dose (Heart-Dmean) between 4 and 5 Gy was the most frequently reported parameter (17.2 % and 39.3 %). Conclusion:  The delineation approaches and sparing techniques for OAR in BC RT vary between ROs worldwide. The low response rate to the dose constraints subset of queries reflects the uncertainty surrounding this topic and supports the need for detailed consensus recommendations in the clinical practice.

18.
Diagnostics (Basel) ; 14(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38472938

ABSTRACT

Multi-criteria optimization (MCO) function has been available on commercial radiotherapy (RT) treatment planning systems to improve plan quality; however, no study has compared Eclipse and RayStation MCO functions for prostate RT planning. The purpose of this study was to compare prostate RT MCO plan qualities in terms of discrepancies between Pareto optimal and final deliverable plans, and dosimetric impact of final deliverable plans. In total, 25 computed tomography datasets of prostate cancer patients were used for Eclipse (version 16.1) and RayStation (version 12A) MCO-based plannings with doses received by 98% of planning target volume having 76 Gy prescription (PTV76D98%) and 50% of rectum (rectum D50%) selected as trade-off criteria. Pareto optimal and final deliverable plan discrepancies were determined based on PTV76D98% and rectum D50% percentage differences. Their final deliverable plans were compared in terms of doses received by PTV76 and other structures including rectum, and PTV76 homogeneity index (HI) and conformity index (CI), using a t-test. Both systems showed discrepancies between Pareto optimal and final deliverable plans (Eclipse: -0.89% (PTV76D98%) and -2.49% (Rectum D50%); RayStation: 3.56% (PTV76D98%) and -1.96% (Rectum D50%)). Statistically significantly different average values of PTV76D98%,HI and CI, and mean dose received by rectum (Eclipse: 76.07 Gy, 0.06, 1.05 and 39.36 Gy; RayStation: 70.43 Gy, 0.11, 0.87 and 51.65 Gy) are noted, respectively (p < 0.001). Eclipse MCO-based prostate RT plan quality appears better than that of RayStation.

19.
Clin Oncol (R Coll Radiol) ; 36(6): e154-e162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553363

ABSTRACT

BACKGROUND AND PURPOSE: For high-risk neuroblastoma, planning target volume coverage is often compromised to respect adjacent kidney tolerance. This trial investigated whether intensity-modulated arc radiotherapy techniques (IMAT) could facilitate dose escalation better than conventional techniques. MATERIALS AND METHODS: Children with high-risk abdominal neuroblastoma referred for radiotherapy to the primary tumour site and involved regional lymph nodes were randomised to receive either standard dose (21 Gy in 14 fractions) or escalated dose (36 Gy in 24 fractions) radiotherapy. Dual planning with both a conventional anterior-posterior parallel opposed pair radiotherapy technique and an IMAT technique was performed. The quality of target volume and organ-at-risk delineation, and dosimetric plans, were externally reviewed. Dosimetric parameters were used to judge the superior technique for treatment. This feasibility trial was not powered to detect improvement in outcome with dose escalation. RESULTS: Between 2017 and 2020, 50 patients were randomised and dual-planned. The IMAT technique was judged more favourable in 48 patients. In all patients randomised to receive 36 Gy, IMAT would have permitted delivery of the full dose (median D50% 36.0 Gy, inter-quartile range 36.0-36.1 Gy) to the target volume, whereas dose compromise would have been required with conventional planning (median D50% 35.6 Gy, inter-quartile range 28.7-35.9 Gy). CONCLUSION: IMAT facilitates safe dose escalation to 36 Gy in patients receiving radiotherapy for neuroblastoma. The value of dose escalation is now being evaluated in a current prospective phase III randomised trial.


Subject(s)
Feasibility Studies , Neuroblastoma , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Humans , Neuroblastoma/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Male , Female , Child, Preschool , Child , Infant , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects
20.
Radiother Oncol ; 194: 110145, 2024 05.
Article in English | MEDLINE | ID: mdl-38341093

ABSTRACT

BACKGROUND AND PURPOSE: Adaptive radiotherapy (ART) relies on re-planning to correct treatment variations, but the optimal timing of re-planning to account for dose changes in head and neck organs at risk (OARs) is still under investigation. We aimed to find out the optimal timing of re-planning in head and neck ART. MATERIALS AND METHODS: A total of 110 head and neck cancer patients were retrospectively enrolled. A semi auto-segmentation method was applied to obtain the weekly mean dose (Dmean) to OARs. The K-nearest-neighbour method was used for missing data imputation of weekly Dmean. A dose deviation map was built using the planning Dmean and weekly Dmean values and then used to simulate different ART scenarios consisting of 1 to 6 re-plannings. The difference between accumulated Dmean and planning Dmean before re-planning (ΔDmean_acc_noART) and after re-planning (ΔDmean_acc_ART) were evaluated and compared. RESULTS: Among all the OARs, supraglottic showed the largest ΔDmean_acc_noART (1.23 ± 3.13 Gy) and most cases of ΔDmean_acc_noART > 3 Gy (26 patients). The 3rd week is suggested in the optimal timing of re-planning for 10 OARs. For all the organs except arytenoid, 2 re-plannings were able to guarantee the ΔDmean_acc_ART below 3 Gy while the average |ΔDmean_acc_ART| was below 1 Gy. ART scenarios of 2_4, 3_4, 3_5 (week of re-planning separated with "_") were able to guarantee ΔDmean_acc_ART of 99 % of patients below 3 Gy simultaneously for 19 OARs. CONCLUSIONS: The optimal timing of re-planning was suggested for different organs at risk in head and neck adaptive radiotherapy. Generic scenarios of timing and frequency for re-planning can be applied to guarantee the increase of accumulated mean dose within 3 Gy simultaneously for multiple organs.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Organs at Risk/radiation effects , Male , Female , Middle Aged , Aged , Time Factors , Adult , Radiotherapy, Intensity-Modulated/methods , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL