Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.365
Filter
1.
Ther Adv Med Oncol ; 16: 17588359241279715, 2024.
Article in English | MEDLINE | ID: mdl-39371619

ABSTRACT

Background: Real-world data on C-MET protein overexpression in non-small cell lung cancer (NSCLC) patients, particularly among the Asian Chinese population, are limited. Objectives: This study aimed to evaluate the clinicomolecular characteristics and prognosis of C-MET overexpression in Chinese NSCLC patients, focusing on those with positive C-MET overexpression (immunohistochemistry (IHC) 3+). Design: A retrospective and observational study. Methods: Data were collected from NSCLC patients diagnosed at the First Affiliated Hospital of Guangzhou Medical University between November 2006 and April 2021. We identified C-MET overexpression using IHC and C-MET overexpression positivity was defined as IHC 3+ with ⩾50% tumor cells. Additionally, patient genotypes were collected for subgroup analysis. Results: Data from 9785 NSCLC patients were collected. C-MET (-) accounted for 5% (503/9785), C-MET (+) for 27% (2654/9785), C-MET (++) for 36% (3464/9785), and C-MET (+++) for 32% (3164/9785). Genetic testing was available for 4326 patients. Wild-type was observed in 37% (1591 cases), with epidermal growth factor receptor (EGFR) abnormalities being the most common at 49% (2127 cases). Positive C-MET overexpression correlated significantly with women (p < 0.001), early-stage (p = 0.003), adenocarcinoma (p < 0.001), and driver mutations (p < 0.001). Patients with anaplastic lymphoma kinase (ALK) alterations had a higher occurrence of C-MET overexpression positivity (57.1%). Positive C-MET overexpression was significantly associated with EGFR (p < 0.001), ALK (p < 0.001), and KRAS alterations (p = 0.024). Compared to C-MET overexpression (IHC 0), C-MET overexpression (IHC 2+) (hazard ratio (HR) = 0.455, p < 0.001) and C-MET overexpression (IHC 3+) (HR = 0.569, p < 0.001) were correlated with better overall survival in overall NSCLC patients, especially for C-MET overexpression (IHC 2+). Conclusion: Our study elucidates the clinicomolecular characteristics and prognosis of C-MET overexpression in NSCLC patients, particularly those with positive C-MET overexpression (IHC 3+). This provides insight into the prevalence of C-MET overexpression in Chinese NSCLC patients and offers a basis for considering C-MET overexpression as a prognostic and predictive marker in NSCLC.

2.
Int J Biol Macromol ; : 136354, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39378920

ABSTRACT

Chromoplasts are specialized plastids in plants involved in carotenoid synthesis, accumulation, and stress resistance. In tomatoes (Solanum lycopersicum), the Chromoplast-associated carotenoid binding protein (CHRC) regulates chromoplast development and carotenoid accumulation, although its precise mechanisms are not yet fully understood. To investigate the role of SlCHRC in carotenoid biosynthesis, we generated transgenic tomatoes using overexpression (oe-SlCHRC) and CRISPR/Cas9-mediated gene editing (cr-SlCHRC) techniques. The results demonstrated inhibited fruit ripening and delayed onset of color break in both transgenic lines. The oe-SlCHRC lines exhibited increased carotenoid accumulation, particularly (E/Z)-phytoene, lycopene, and γ-carotene, with abundant plastoglobules and carotenoid crystals observed via TEM. In contrast, cr-SlCHRC mutants showed a greener phenotype, reduced carotenoid content, and fewer plastoglobules at the BK + 10 stage. Transcriptome analysis indicated that SlCHRC influences key genes in carotenoid biosynthesis, such as SlNCED2, as well as genes related to chloroplast development, photosynthesis, and plastoglobule formation. Additionally, SlCHRC enhances heat stress tolerance in tomato fruits by upregulating heat shock proteins (HSPs), antioxidants, and proline accumulation. These findings indicate that SlCHRC plays a crucial role in improving tomato fruit quality under heat stress conditions.

3.
Cell J ; 26(8): 496-504, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39380480

ABSTRACT

OBJECTIVE: Breast cancer is a prevalent and heterogeneous disease, with human epidermal growth factor receptor-2 (HER2) overexpression occurring in over 20% of cases. Poncirin, a biologically active flavonone derived from the immature dried fruits of Poncirus trifoliata, is a 7-O-neohesperidoside of isosakuranetin with a well-documented history in traditional Chinese medicine for its health-promoting properties. While the previous research hinted at its potential as an anticancer agent, its specific effects on HER2 overexpressing breast cancer cells remain largely unexplored. The aim of this study is to investigate the specific effects of Poncirin, on HER2 overexpressing breast cancer cells. MATERIALS AND METHODS: In experimental study, we assessed cell proliferation using the CCK-8 assay and explored cell migration and invasion with transwell assays. Additionally, we evaluated colony formation ability and examined apoptosis through the acridine orange/ethidium bromide (AO/EB) and Annexin V-fluorescein isothiocyanate (FITC)/ propidium iodide (PI) staining methods. The study also delved into the molecular mechanisms involved by scrutinizing the phosphatidylinositol 3-kinase/serine-threonine protein kinase (PI3K/AKT) signaling pathway via Western blotting. Furthermore, the researchers conducted in vivo experiments using mouse models to corroborate the findings in a living organism. RESULTS: Poncirin demonstrated a remarkable ability to selectively inhibit proliferation and metastasis of HER2 overexpressing breast cancer cells. Mechanistically, the compound seemed to exert its effects by modulating the PI3K/AKT signaling pathway, implying its central role in the observed anticancer effects. These findings were further substantiated by in vivo experiments, which consistently showed a reduction in tumor growth when poncirin was administered. CONCLUSION: This study underscores potential of poncirin as a potent agent for restraining the growth and metastasis of HER2 overexpressing breast cancer cells. The evidence suggests that poncirin efficacy may be attributed to its modulation possibly through PI3K/AKT pathway.

4.
Pest Manag Sci ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373621

ABSTRACT

BACKGROUND: The root-knot nematode (RKN), Meloidogyne incognita, affects food production globally and nematicides, such as fosthiazate and fluopyram, are frequently used in Japan to control damage caused by RKN. In aboveground pests, the emergence of a population with developed resistance is frequently found after the continuous use of the same pesticides; however, there are few studies on changes in the sensitivity of plant-parasitic nematodes, including RKN, to nematicides. RESULTS: We compared the sensitivity of two populations of M. incognita to fosthiazate and fluopyram, one population with a history of exposure to fosthiazate and 1,3-dichloropropene (Ibaraki population) and the other without nematicide use for decades (Aichi population). A concentration of fosthiazate and fluopyram causing 50% mortality at 24 h post-treatment (LC50) was markedly higher in the Ibaraki population (5.4 and 2.3 mg L-1) than in the Aichi population (0.024 and 0.011 mg L-1 in fosthiazate and fluopyram, respectively), indicating the low sensitivity of the Ibaraki population to fosthiazate and fluopyram. Experiments using different enzyme inhibitors indicated the involvement of acetylcholinesterase (AChE), which is the target of fosthiazate, and glutathione S-transferase (GST), a typical enzyme related to detoxification, in the low sensitivity mechanism. The activity of AChE was 33-fold higher in the Ibaraki population than in the Aichi population and there were many differences in their nucleotide sequences. In addition, the gene expression level of GST was 239-fold higher in the Ibaraki population than in the Aichi population. CONCLUSION: These results revealed differences in the sensitivity to nematicides among RKN populations. Two factors were identified as related to the mechanism of low sensitivity in the Ibaraki population. This is the first report showing the difference in the sensitivity to fluopyram between populations of M. incognita. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

5.
J Agric Food Chem ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377301

ABSTRACT

Intensive application of glyphosate has resulted in resistance evolution in many weed populations, including Eleusine indica. This study characterized glyphosate resistance and investigated the underlying mechanisms in a glyphosate-resistant population (R-JX) of E. indica from China. The R-JX population was 8.5 times resistant to glyphosate relative to the glyphosate-susceptible population (SA). Point mutations were not observed in the target gene 5-enolypyruvyl-shikimate-3-phosphate synthase gene (EPSPS). However, the expression level and copy number of EPSPS were 8.8 times and 15.2 times, respectively, greater in R-JX than that in the SA population. Pre-application of the P450 inhibitor lowered the resistance level to glyphosate from 8.5 times to 3.6 times in the R-JX population. RNA-Seq and RT-qPCR revealed that the CYP71AK44 gene was consistently upregulated in R-JX and five other glyphosate-resistant populations. Rice calli and seedlings overexpressing CYP71AK44 showed glyphosate resistance. In conclusion, overexpression of the target EPSPS plus CYP71AK44 collectively contributes to glyphosate resistance in these E. indica populations.

6.
Plant Physiol Biochem ; 216: 109086, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39241627

ABSTRACT

Drought stress strongly restricts the growth, development, and yield of wheat worldwide. Among the various transcription factors (TFs) involved in the wheat drought response, the specific functions of many basic leucine zipper (bZIP) TFs related to drought tolerance are still not well understood. In this study, we focused on the bZIP TF TabZIP156 in wheat. Our analysis showed that TabZIP156 was highly expressed in both roots and leaves, and it responded to drought and abscisic acid (ABA) stress. Through subcellular localization and transactivation assays, we confirmed that TabZIP156 was located to the nucleus and functioned as a transcriptional activator. Overexpression of TabZIP156 in Arabidopsis enhanced drought tolerance, as evidenced by higher germination rate, longer root length, lower water loss rate, reduced ion leakage, increased proline accumulation, decreased levels of H2O2, O2- and MDA, and improved activities of POD, SOD, and CAT enzymes. Additionally, the expression of drought- and antioxidant-related genes were significantly upregulated in TabZIP156 transgenic Arabidopsis under drought stress. However, silencing TabZIP156 in wheat led to decreased proline content, increased accumulation of H2O2, O2- and MDA, reduced activities of antioxidant enzymes, and downregulation of many drought- and antioxidant-related genes under drought stress. Furthermore, the dual-luciferase assay demonstrated that TabZIP156 could activate the expression of TaP5CS, TaDREB1A, and TaPOD by binding to their promoters. Taken together, this study highlights the significant role of TabZIP156 in drought stress and provides valuable insights for its potential application in breeding drought-resistant wheat.

7.
Plant Physiol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39268871

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system allows precise and easy editing of genes in many plant species. However, this system has not yet been applied to any fern species through gametophytes due to the complex characteristics of fern genomes, genetics, and physiology. Here, we established a protocol for gametophyte-based screening of single-guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas9-mediated gene knockout in a model fern species, Ceratopteris richardii. We utilized the C. richardii ACTIN promoter to drive sgRNA expression and the enhanced CaMV 35S promoter to drive the expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system, which was employed to successfully edit a few genes, such as Nucleotidase/phosphatase 1 (CrSAL1) and Phytoene Desaturase (CrPDS), which resulted in an albino phenotype in C. richardii. Knockout of CrSAL1 resulted in significantly (P<0.05) reduced stomatal conductance (gs), leaf transpiration rate (E), guard cell length, and abscisic acid (ABA)-induced reactive oxygen species (ROS) accumulation in guard cells. Moreover, CrSAL1 overexpressing plants showed significantly increased net photosynthetic rate (A), gs, and E as well as most of the stomatal traits and ABA-induced ROS production in guard cells compared to the wild-type (WT) plants. Taken together, our optimized CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern species, allowing the exploration of fern gene functions for evolutionary biology, herbal medicine discovery, and agricultural applications.

8.
Plants (Basel) ; 13(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273906

ABSTRACT

The significant reduction in cassava (Manihot esculenta Crantz) yields attributed to cassava bacterial blight (CBB) constitutes an urgent matter demanding prompt attention. The current study centered on the MebHLH149 transcription factor, which is acknowledged to be reactive to CBB and exhibits augmented expression levels, as indicated by laboratory transcriptome data. Our exploration, encompassing Xanthomonas phaseoli pv. manihotis strain CHN01 (Xpm CHN01) and hormone stress, disclosed that the MebHLH149 gene interacts with the pathogen at the early stage of infection. Furthermore, the MebHLH149 gene has been discovered to be responsive to the plant hormones abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA), intimating a potential role in the signaling pathways mediated by these hormones. An analysis of the protein's subcellular localization suggested that MebHLH149 is predominantly located within the nucleus. Through virus-induced gene silencing (VIGS) in cassava, we discovered that MebHLH149-silenced plants manifested higher disease susceptibility, less ROS accumulation, and significantly larger leaf spot areas compared to control plants. The proteins MePRE5 and MePRE6, which are predicted to interact with MebHLH149, demonstrated complementary downregulation and upregulation patterns in response to silencing and overexpression of the MebHLH149 gene. This implies a potential interaction between MebHLH149 and these proteins. Both MePRE5 and MePRE6 genes are involved in the initial immune response to CBB. Notably, MebHLH149 was identified as a protein that physically interacts with MePRE5 and MePRE6. Based on these findings, it is hypothesized that the MebHLH149 gene likely functions as a positive regulator in the defense mechanisms of cassava against CBB.

9.
Microbiol Res ; 288: 127889, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217797

ABSTRACT

Clostridium butyricum has emerged as a promising candidate for both industrial and medical biotechnologies, underscoring the key pursuit of stable gene overexpression in engineering C. butyricum. Unlike antibiotic-selective vectors, native-cryptic plasmids can be utilized for antibiotic-free expression systems in bacteria but have not been effectively exploited in C. butyricum to date. This study focuses on leveraging these plasmids, pCB101 and pCB102, in C. butyricum DSM10702 for stable gene overexpression without antibiotic selection via efficient gene integration using the SacB-based allelic exchange method. Integration of reporter IFP2.0 and glucuronidase generated sustained near-infrared fluorescence and robust enzyme activity across successive subcultures. Furthermore, successful secretion of a cellulase, Cel9M, and the human interleukin 10 from pCB102 highlights native-cryptic plasmids' potential in conferring stable gene products for industrial and medical applications in C. butyricum. This work appears to be the first study to harness the Clostridium native-cryptic plasmid for stable gene overexpression without antibiotics, thereby advancing the biotechnological prospects of C. butyricum.


Subject(s)
Clostridium butyricum , Plasmids , Clostridium butyricum/genetics , Plasmids/genetics , Humans , Gene Expression , Biotechnology/methods , Glucuronidase/genetics , Glucuronidase/metabolism , Cellulase/genetics , Cellulase/metabolism , Genes, Reporter , Industrial Microbiology/methods , Gene Expression Regulation, Bacterial , Genetic Vectors
10.
Cureus ; 16(8): e66473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39246909

ABSTRACT

Aim To examine the relationship between tumor differentiation, parametrial, and lymphovascular invasion, as well as the differential expression pattern of cyclooxygenase-2 (COX-2) in cervical intraepithelial neoplasia and various forms of cervical cancer. Methods Histologically diagnosed cases of in-situ and malignant lesions of the cervix were included in the study. Two sections were cut from paraffin blocks. One section was stained with Haematoxylin and Eosin (H&E) for morphologic diagnosis, and the other sections were subjected to COX-2 immunohistochemical staining. Cases of colon carcinoma were taken as positive controls. Cytoplasmic and membrane staining of tumor cells were considered as positive staining, and grading was done. Results Out of the 62 patients, 40 cases (64.5%) showed positive expression of COX-2 in squamous cell carcinoma when compared to in-situ cervical intraepithelial neoplasia and adenocarcinoma. The results were statistically significant, with a p-value of 0.003. Conclusion COX-2 expression is directly proportional to the level of grading of the tumor. The higher the grading, the higher the expression of COX-2. Selective COX-2 inhibitors increase the efficacy of chemotherapy or radiotherapy.

11.
Plants (Basel) ; 13(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339582

ABSTRACT

Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes the deamination of phenylalanine, which is the initial step in the biosynthesis of phenylpropanoids. It serves as a crucial enzyme that facilitates the transfer of carbon from primary to secondary metabolism in plants. Duckweed is regarded as a promising chassis plant in synthetic biology research and application, due to its being rich in secondary metabolites and other advantages. The genes encoding PAL in Spirodela polyrhiza (L.) Schleid, the giant duckweed, were investigated in this study. Three SpPAL genes (SpPAL1-SpPAL3) were identified and cloned. All of them were successfully expressed in E. coli, and their recombinant proteins all showed PAL activity. In addition, SpPAL1 and SpPAL2 proteins could also utilize tyrosine as substrate, although the activity was low. A qRT-PCR analysis demonstrated that the expression of SpPAL3 was most pronounced in young fronds. It was found that the expression of SpPAL1 and SpPAL3 was significantly induced by MeJA treatment. Overexpression of SpPAL3 in Lemna turionifera inhibited the growth of fronds and adventitious roots in the transgenic plants, indicating the importance of SpPAL3 in duckweed besides its involvement in the secondary metabolism.

12.
Plants (Basel) ; 13(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39339623

ABSTRACT

Dryopteris fragrans (L.) Schott has anti-inflammatory and antioxidant properties, and terpenoids are important components of its active constituents. The methyl-D-erythritol 4-phosphate (MEP) pathway is one of the major pathways for the synthesis of terpene precursors in plants, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme in this pathway. DXS has been shown to be associated with increased stress tolerance in plants. In this experiment, two DXS genes were extracted from the D. fragrans transcriptome and named DfDXS1 and DfDXS2. Based on phylogenetic tree and conserved motif analyses, DXS was shown to be highly conserved evolutionarily and its localization to chloroplasts was determined by subcellular localization. Prokaryotic expression results showed that the number and growth status of recombinant colonies were better than the control under 400 mM NaCl salt stress and 800 mM mannitol-simulated drought stress. In addition, the DfDXS1 and DfDXS2 transgenic tobacco plants showed improved resistance to drought and salt stress. DfDXS1 and DfDXS2 responded strongly to methyl jasmonate (MeJA) and PEG-mimicked drought stress following exogenous hormone and abiotic stress treatments of D. fragrans. The transcriptional active sites were investigated by dual luciferase and GUS staining assays, and the results showed that the STRE element (AGGGG), the ABRE element (ACGTGGC), and the MYC element (CATTTG) were the important transcriptional active sites in the promoters of the two DXS genes, which were closely associated with hormone response and abiotic stress. These results suggest that the DfDXS gene of D. fragrans plays an important role in hormone signaling and response to stress. This study provides a reference for analyzing the molecular mechanisms of stress tolerance in D. fragrans.

13.
J Med Case Rep ; 18(1): 450, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39334445

ABSTRACT

BACKGROUND: B-Raf mutation positivity, B-Raf mutation positivity occurrence with programmed death ligand 1 overexpression, and musculoskeletal metastasis are singly rare in non-small cell lung cancer, and even rarer is all occurring in one patient. CASE PRESENTATION: A Filipino 63-year-old male had B-Raf mutation positive and programmed death ligand 1 overexpressed symptomatic metastatic musculoskeletal lesions from lung adenocarcinoma treated with a BRAF inhibitor, vemurafenib, in combination with an immune checkpoint inhibitor, pembrolizumab. He exhibited significant reduction in pain and burden of musculoskeletal metastatic lesions. CONCLUSION: Although a rare occurrence and known to have a poor prognosis, B-Raf mutation positive programmed death ligand 1 overexpressed lung adenocarcinoma presenting with metastatic musculoskeletal lesions can respond favorably to a combination immune checkpoint inhibitor and BRAF inhibitor medication.


Subject(s)
Adenocarcinoma of Lung , Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Lung Neoplasms , Proto-Oncogene Proteins B-raf , Vemurafenib , Humans , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Vemurafenib/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/secondary , Adenocarcinoma of Lung/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mutation , Immune Checkpoint Inhibitors/therapeutic use
14.
Cancers (Basel) ; 16(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39335117

ABSTRACT

The oncogene ERBB2, also known as HER2 or c-ERB2, is located on chromosome 17 (q12). It encodes a tyrosine kinase receptor, the human epidermal growth factor receptor 2 (HER2), involved in neoplastic proliferation, tumor angiogenesis, and invasiveness. Over the past years, the introduction of various anti-HER2 therapies has significantly improved outcomes for patients with HER2-positive breast and gastroesophageal carcinomas. More recently, the introduction of a new antibody-drug conjugate, that is trastuzumab deruxtecan, expanded the therapeutic options to low-HER2 breast and gastroesophageal tumors. HER2 protein overexpression is investigated using immunohistochemistry, gene amplification using fluorescence in situ hybridization, and gene mutation using next-generation sequencing. This review evaluated the predictive and prognostic role of HER2 status in various types of epithelial malignant cancers beyond breast and gastroesophageal cancers. We critically analyzed the key published studies, focusing on utilized scoring systems and assays used, and analyzed clinical parameters and therapeutic approaches. Although the evidence about prognostic and predictive roles of HER2 in carcinomas other than breast and gastroesophageal has been widely increasing over the last decade, it still remains investigational, revealing a tumor site-related prognostic and predictive value of the different types of HER2 alterations. However, standardized and validated scoring system assays have not been well-established for many organs.

15.
Animals (Basel) ; 14(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39335216

ABSTRACT

Recently, human epidermal growth factor receptor 2 (HER2) has emerged as a therapeutic target of interest for non-small-cell lung cancer in humans. The role of HER2 in canine pulmonary adenocarcinomas is poorly documented. To address this gap, this study employed three methodologies: immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS) to investigate the protein expression, gene amplification, and mutation of HER2 in 19 canine primary pulmonary adenocarcinomas. By IHC, 3 out of 19 cases were overexpressed 3+, 6 were 2+, and 10 were negative. With FISH, 2 cases were amplified (12.5%), 3 were inadequate for the analyses, and the others were non-amplified. With NGS, seven cases were inadequate. All other cases were wild-type, except for one IHC 3+ case, which was amplified with FISH and with a specific mutation already described in human pulmonary adenocarcinoma, V659E. This mutation is probably sensitive to tyrosine kinase inhibitory drugs. These results are similar to those in human medicine and to the few data in the literature on canine lung carcinomas; the presence of 12.5% of amplified cases in dogs lays the foundation for future targeted drugs against HER2 alterations.

16.
Biology (Basel) ; 13(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39336122

ABSTRACT

The xanthophyll cycle is a photoprotective mechanism in plants and algae, which protects the photosynthetic system from excess light damage under abiotic stress. Zeaxanthin is considered to play a pivotal role in this process. In this study, the relative content of xanthophylls was determined using HPLC-MS/MS in Ulva prolifera exposed to different salinities. The results showed that high-salt stress significantly increased the relative content of xanthophylls and led to the accumulation of zeaxanthin. It was speculated that the accumulated zeaxanthin may contribute to the response of U. prolifera to high-salt stress. Zeaxanthin epoxidase (ZEP) is a key enzyme in the xanthophyll cycle and is also involved in the synthesis of abscisic acid and carotenoids. In order to explore the biological function of ZEP, a ZEP gene was cloned and identified from U. prolifera. The CDS of UpZEP is 1122 bp and encodes 373 amino acids. Phylogenetic analysis showed that UpZEP clusters within a clade of green algae. The results of qRT-PCR showed that high-salt stress induced the expression of UpZEP. In addition, heterologous overexpression of the UpZEP gene in yeast and Chlamydomonas reinhardtii improved the salt tolerance of transgenic organisms. In conclusion, the UpZEP gene may be involved in the response of U. prolifera to high-salt stress and can improve the high-salt tolerance of transgenic organisms.

17.
Mater Today Bio ; 28: 101254, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39328787

ABSTRACT

Guiding endogenous regeneration of bone defects using biomaterials and regenerative medicine is considered an optimal strategy. One of the effective therapeutic approaches involves using transgene-expressed stem cells to treat tissue destruction and replace damaged parts. Among the various gene editing techniques for cells, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is considered as a promising method owing to the increasing therapeutic potential of cells by targeting specific sites. Herein, a vitamin D-incorporated poly(lactic-co-glycolic acid) (PLGA) scaffold with bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF)-overexpressed tonsil-derived MSCs (ToMSCs) via CRISPR/Cas9 was introduced for bone tissue regeneration. The optimized seeding ratio of engineered ToMSCs on the scaffold demonstrated favorable immunomodulatory function, angiogenesis, and osteogenic activity in vitro. The multifunctional scaffold could potentially support stem cell in vivo and induce the transition from M1 to M2 macrophage with magnesium hydroxide and vitamin D. This study highlights the improved synergistic effect of a vitamin D-incorporated PLGA scaffold and a gene-edited ToMSCs for bone tissue engineering and regenerative medicine.

18.
J Neuroinflammation ; 21(1): 231, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300526

ABSTRACT

Viral encephalitis is characterized by inflammation of the brain parenchyma caused by a variety of viruses, among which the Japanese encephalitis (JE) virus (JEV) is a typical representative arbovirus. Neuronal death, neuroinflammation, and breakdown of the blood brain barrier (BBB) constitute vicious circles of JE progression. Currently, there is no effective therapy to prevent this damage. Growth arrest specific gene 6 (GAS6) is a secreted growth factor that binds to the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases and has been demonstrated to participate in neuroprotection and suppression of inflammation in many central nervous system (CNS) diseases which has great potential for JE intervention. In this study, we found that GAS6 expression in the brain was decreased and was reversely correlated with viral load and neuronal loss. Mice with GAS6/TAM signalling deficiency showed higher mortality and accelerated neuroinflammation during peripheral JEV infection, accompanied by BBB breakdown. GAS6 directly promoted the expression of tight junction proteins in bEnd.3 cells and strengthened BBB integrity, partly via AXL. Mice administered GAS6 were more resistant to JEV infection due to increased BBB integrity, as well as decreased viral load and neuroinflammation. Thus, targeted GAS6 delivery may represent a strategy for the prevention and treatment of JE especially in patients with impaired BBB.


Subject(s)
Encephalitis, Japanese , Intercellular Signaling Peptides and Proteins , Neuroinflammatory Diseases , Animals , Mice , Axl Receptor Tyrosine Kinase , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Encephalitis, Japanese/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neuroinflammatory Diseases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics
19.
Free Radic Biol Med ; 225: 15-23, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326682

ABSTRACT

Our previous work indicated that the quorum sensing (QS) effect could regulate the oxidative tolerance of Saccharomyces cerevisiae, and QS may impact oxidative and antioxidative metabolisms of S. cerevisiae by regulating the RCK1 gene. Therefore, this work proposed a reasonable logic that RCK1 could play roles in regulating the oxidative and antioxidative metabolisms of yeast cells. The results presented here suggested that the overexpression of RCK1 has a regulatory effect on the reduction of ROS level and the promotion of oxidative tolerance of S. cerevisiae. The overexpression of RCK1 promoted the ROS generation through activating the MAPK pathway; on the other hand, RCK1-regulated antioxidative metabolism played a more significant role to realize lower ROS level and higher oxidative tolerance of S288c-RCK1 and ΔARO80-RCK1 strains. To improve the fermentation performance of yeast while circumventing metabolic burden, a recombinant strain with over time-controlled overexpression of the RCK1 gene (i.e., S288c'-RCK1 strain) derived from S288c strain was successfully constructed to achieve artificial regulation of yeast oxidative tolerance. Transcriptomics analysis was further performed on both S. cerevisiae wild-type and S288c'-RCK1 strains to identify differentially expressed genes and analyze their functional pathway classification. This work is instructive for artificially modulating the oxidative tolerance of strains to enhance the fermentation performance of yeast.

20.
Int J Biochem Cell Biol ; 176: 106666, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343060

ABSTRACT

Oncogene amplification is a significant factor contributing to poor prognosis and limited treatment in patients with advanced gastric cancer. Therefore, identifying amplified oncogenes and elucidating their oncogenic mechanisms will provide reliable therapeutic targets for the clinical treatment of gastric cancer. In this study, we identify a high amplification of 17q12, which includes five oncogenes that are co-amplified and co-overexpressed with ERBB2 using array comparative genomic hybridization, with migration and invasion enhancer 1 (MIEN1) being particularly highlighted for its clinical significance, function, and role in gastric cancer progression. By detecting MIEN1 copy number and expression level across eight gastric cancer cell lines and in tissue microarrays from 543 primary gastric cancer tissues, we found that MIEN1 amplification and overexpression correlated with sex and Lauren's intestinal type classification of gastric cancer. Besides that, elevated MIEN1 expression was associated with poorer patient survival. In vitro experiments have shown that MIEN1 overexpression enhanced cell proliferation, invasion, and migration, whereas MIEN1 knockdown reversed these malignant phenotypes in vitro. Furthermore, MIEN1 knockdown inhibited tumorigenesis and metastasis of gastric cancer cells in nude mice. Mechanistically, MIEN1 activates the IL-6/JAK2/STAT3 signaling pathway, which drives the proliferation, invasion, and migration of gastric cancer cells. This study demonstrates that MIEN1 contributes to the malignant behavior of gastric cancer through the IL-6/JAK2/STAT3 pathway, suggesting that MIEN1 could serve as a valuable therapeutic target for gastric cancer.

SELECTION OF CITATIONS
SEARCH DETAIL