Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Publication year range
1.
Neuropharmacology ; 236: 109574, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37156336

ABSTRACT

Ionotropic receptors are ligand-gated ion channels triggering fast neurotransmitter responses. Among them, P2X and 5-HT3 receptors have been shown to physically interact each other and functionally inducing cross inhibitory responses. Nevertheless, despite the importance of P2X4 and 5-HT3A receptors that mediate for example neuropathic pain and psychosis respectively, complementary evidence has recently started to move forward in the understanding of this interaction. In this review, we discuss current evidence supporting the mechanism of crosstalking between both receptors, from the structural to the transduction pathway level. We expect this work may guide the design of further experiments to obtain a comprehensive view for the neuropharmacological role of these interacting receptors. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Subject(s)
Ligand-Gated Ion Channels , Receptors, Serotonin, 5-HT3 , Receptors, Serotonin, 5-HT3/metabolism , Serotonin/metabolism , Protein Transport , Protein Binding/physiology , Ligand-Gated Ion Channels/metabolism , Receptors, Purinergic P2X4/metabolism
2.
Front Cell Neurosci ; 14: 106, 2020.
Article in English | MEDLINE | ID: mdl-32431598

ABSTRACT

Interacting receptors at the neuronal plasma membrane represent an additional regulatory mode for intracellular transduction pathways. P2X4 receptor triggers fast neurotransmission responses via a transient increase in intracellular Ca2+ levels. It has been proposed that the P2X4 receptor interacts with the 5-HT3A receptor in hippocampal neurons, but their binding stoichiometry and the role of P2X4 receptor activation by ATP on this crosstalking system remains unknown. Via pull-down assays, total internal reflection fluorescence (TIRF) microscopy measurements of the receptors colocalization and expression at the plasma membrane, and atomic force microscopy (AFM) imaging, we have demonstrated that P2X4/5-HT3A receptor complexes can interact with each other in a 1:1 stoichiometric manner that is preserved after ATP binding. Also, macromolecular docking followed by 100 ns molecular dynamics (MD) simulations suggested that the interaction energy of the P2X4 receptor with 5-HT3A receptor is similar at the holo and the apo state of the P2X4 receptor, and the interacting 5-HT3A receptor decreased the ATP binding energy of P2X4 receptor. Finally, the P2X4 receptor-dependent Ca2+ mobilization is inhibited by the 5-HT3A interacting receptor. Altogether, these findings provide novel molecular insights into the allosteric regulation of P2X4/5-HT3A receptor complex in lipid bilayers of living cells via stoichiometric association, rather than accumulation or unspecific clustering of complexes.

3.
PeerJ ; 7: e7834, 2019.
Article in English | MEDLINE | ID: mdl-31656696

ABSTRACT

Purinergic receptors, especially P2RX, are associated to the severity of symptoms in patients suffering from depressive and bipolar disorders, and genetic deletion or pharmacological blockade of P2RX7 induces antidepressant-like effect in preclinical models. However, there is scarce evidence about the alterations in P2RX7 or P2RX4 levels and in behavioral consequences induced by previous exposure to stress, a major risk factor for depression in humans. In the present study, we evaluated the effect of imipramine (IMI) on P2RX7 and P2RX4 levels in dorsal and ventral hippocampus as well as in the frontal cortex of rats submitted to the pretest session of learned helplessness (LH) paradigm. Repeated, but not acute administration of IMI (15 mg/kg ip) reduced the levels of both P2RX7 and P2RX4 in the ventral, but not in dorsal hippocampus or frontal cortex. In addition, we tested the effect of P2RX7/P2RX4 antagonist brilliant blue G (BBG: 25 or 50 mg/kg ip) on the LH paradigm. We observed that repeated (7 days) but not acute (1 day) treatment with BBG (50 mg) reduced the number of failures to escape the shocks in the test session, a parameter mimicked by the same regimen of IMI treatment. Taken together, our data indicates that pharmacological blockade or decrease in the expression of P2RX7 is associated to the antidepressant-like behavior observed in the LH paradigm after repeated drug administration.

4.
Mol Immunol ; 112: 369-377, 2019 08.
Article in English | MEDLINE | ID: mdl-31279218

ABSTRACT

Obesity is characterized by immune cell infiltration and inflammation. Purinergic receptors such as P2X1, 4 and 7 are expressed on immune cells and their activation contributes with an inflammatory response. However, the simultaneous expression of P2X1, 4 and 7 during overweight or obesity have not been described. Therefore, the aim of this study was to determine single and simultaneously expression and function of the P2X1, 4 and 7 receptors in lymphocytes and CD4 + T cells from peripheral blood (PB) and adipose tissue (AT). Our results showed a higher expression of the P2X4 receptor on CD4 + T cells from PB regarding P2X7 and P2X1 receptor expression. In addition, P2X4 receptor expression on CD4 + T cells from PB and AT was increased in individuals with BMI ≥ 25 Kg/m2. Moreover, a higher simultaneous expression of the P2X4 and P2X7 receptors on CD4 + T cells from AT compared to CD4 + T cells expressing P2X1 and P2X7 receptors simultaneously. Besides, CD4 + T cells expressing P2X4 and P2X7 receptors from PB and AT were augmented in individuals with BMI ≥ 25 Kg/m2. In addition, the percentage of lymphocytes and also CD4 + T cells expressing P2X4 receptor were elevated both in PB and AT compared to cells expressing P2X7 or P2X1. However, CD4 + T cells expressing P2X4 and P2X7 were augmented in AT compared to PB. The function of the receptors showed a lower shedding of CD62 L in adipose tissue mononuclear cells (ATMC) compared with peripheral blood mononuclear cells (PBMC) and a greater participation of P2X4 in the mobilization of intracellular calcium. We concluded that it was possible to determine for the first time the simultaneous expression of purinergic receptors in ATMC, where the P2X4 receptor has a greater participation in the activation of CD4 + T cells possibly modulating the function of the other two receptors.


Subject(s)
Adipose Tissue/metabolism , CD4-Positive T-Lymphocytes/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Purinergic P2X1/metabolism , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X7/metabolism , Adenosine Triphosphate/metabolism , Adult , Calcium/metabolism , Cells, Cultured , Female , Humans , Male , Middle Aged , Young Adult
5.
São Paulo; s.n; s.n; 2013. 87 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-846928

ABSTRACT

O receptor P2X4 (canal iônico controlado por adenosina-5'-trifosfato-ATP) está amplamente distribuído no sistema nervoso central e, após sua ativação, pode regular os níveis de cálcio intracelulares via permeação direta e por ativação de canais de cálcio voltagem-dependentes. Tem sido proposto que a atividade do receptor pode ser importante na plasticidade sináptica. Tendo em vista a importância do receptor P2X4, sobretudo na fisiologia do sistema nervoso central, é útil caracterizá-lo farmacologicamente e entender os mecanismos moleculares que regulam sua atividade. Examinamos o papel que resíduos específicos N- e C-terminais desempenham na atividade do receptor P2X4 humano, combinando técnicas de biologia molecular, bioquímica e patch-clamp em células de rim de embrião humano (células HEK-293T). Células HEK-293T expressando o receptor P2X4 wild-type apresentaram correntes iônicas, cujas amplitudes dependeram da concentração de ATP, fornecendo um valor de EC50 de 1,37 ± 0,21 µM. Os receptores mutantes E14A e D16A exibiram respostas ao ATP equiparáveis àquelas do receptor selvagem, ao passo que os mutantes Y15A e T17A não foram funcionais, apesar de serem expressos na membrana plasmática das células. A inibição de tirosina fosfatases por pervanadato diminuiu fortemente correntes induzidas por ATP. Subsequente análise de citometria de fluxo na presença de um anticorpo contra resíduos de fosfotirosina indicaram que, entre as células que expressam o receptor P2X4, a percentagem de células fosfo-tirosina-positivas é a mesma para os mutantes Y372A (86 ± 10%) e Y378A (79 ± 6.9%), mas substancialmente menor para os mutantes Y15A (35 ± 12%), Y367A (48 ± 6.4%) e Y372F (31 ± 1.7%), quando comparados com células que expressam o receptor wild-type (76 ± 5.6%). Resultados semelhantes foram obtidos quando quantificamos a expressão relativa de proteínas fosforiladas em resíduos de tirosina e expressamos através dos valores de intensidade de fluorescência média. Ensaios de western-blot revelaram que mesmo o mutante T17A é fosforilado em resíduos de treonina, sugerindo que o receptor P2X4 contém outros sítios de fosforilação. Entretanto, nenhum sinal de fosfotirosina foi detectado no receptor wild-type e nos mutantes, em que resíduos de tirosina foram substituídos por alanina ou fenilalanina. Não parece ser o resíduo Y15 o alvo de tal fosforilação, cabendo a ele um papel estrutural mais importante. Nossos dados também sugerem que a fosforilação em resíduos de tirosina de proteínas intermediárias regula a atividade do receptor P2X4


The human P2X4 receptor (ATP-gated ion channel) is widely distributed in the CNS and, after activation, participates in regulation of levels of intracellular calcium through direct permeation and activation of voltage-dependent calcium channels with well-defined functions including synaptic plasticity. Given the importance of the P2X4 receptor, especially in CNS physiology, we investigated the role that specific N- and C-termini residues play in human P2X4 receptor activity, by combining techniques of molecular biology, biochemistry and patch-clamping in human embryonic kidney cells (HEK-293T cells). HEK-293T cells expressing the wild-type P2X4 receptor showed ionic currents whose amplitudes depended on the ATP concentration, providing an EC50 value of 1.37 ± 0.21 mM. E14A and D16A receptor mutants exhibited responses to ATP comparable to those ones of wild-type receptor, whereas Y15A and T17A mutants were not functional, despite being expressed in the plasma membrane of cells. The inhibition of tyrosine phosphatases by pervanadate decreased strongly ATP-induced currents. Subsequent flow cytometry analysis in the presence of an antibody against phosphotyrosine residues indicated that, among the cells that express the P2X4 receptor, the percentage of phosphotyrosine-positive cells was the same for Y372A (86 ± 10%) and Y378A (79 ± 6.9%) mutants, however, substantially lower for Y15A (35 ± 12%), Y367A (48 ± 6.4%) and Y372F (31 ± 1.7%) mutants when compared with cells expressing the wild-type receptor (76 ± 5.6%). Similar results were obtained by quantifying the relative expression of phosphotyrosine proteins. Western blot assays revealed that even the T17A mutant was phosphorylated at threonine residues, suggesting that the human P2X4 receptor also contains further phosphorylation sites. However, no phosphotyrosine-antibody signal was detected in the wild-type receptor and mutants in which tyrosine residues were replaced by alanine or phenylalanine. The residue Y15 is supposedly not the target of such phosphorylation, despite its important structural role. However, the present work indicates that tyrosine phosphorylation of intermediate signaling proteins regulates P2X4 receptor activity


Subject(s)
Receptors, Purinergic P2X4/genetics , Threonine/analysis , Tyrosine/analysis , Blotting, Western/instrumentation , Central Nervous System/physiology , Flow Cytometry/methods , Patch-Clamp Techniques/methods , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL