Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Front Immunol ; 15: 1409434, 2024.
Article in English | MEDLINE | ID: mdl-39076990

ABSTRACT

Introduction: Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the importance of which has been determined in various cell types, including T regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an inborn error in immunity characterized by immunodeficiency and autoimmunity. In addition to defects in T regulatory cells, patients with LRBA deficiency also exhibit B cell defects, such as reduced cell number, low memory B cells, hypogammaglobulinemia, impaired B cell proliferation, and increased autophagy. Although Lrba-/- mice do not exhibit the immunodeficiency observed in humans, responses to B cell receptors (BCR) in B cells have not been explored. Therefore, a murine model is for elucidating the mechanism of Lrba mechanism in B cells. Aim: To compare and evaluate spleen-derived B cell responses to BCR crosslinking in C57BL6 Lrba-/- and Lrba+/+ mice. Materials and methods: Spleen-derived B cells were obtained from 8 to 12-week-old mice. Subpopulations were determined by immunostaining and flow cytometry. BCR crosslinking was assessed by the F(ab')2 anti-µ chain. Activation, proliferation and viability assays were performed using flow cytometry and protein phosphorylation was evaluated by immunoblotting. The nuclear localization of p65 was determined using confocal microscopy. Nur77 expression was evaluated by Western blot. Results: Lrba-/- B cells showed an activated phenotype and a decreased proportion of transitional 1 B cells, and both proliferation and survival were affected after BCR crosslinking in the Lrba-/- mice. The NF-κB pathway exhibited a basal activation status of several components, resulting in increased activation of p50, p65, and IκBα, basal p50 activation was reduced by the Plcγ2 inhibitor U73122. BCR crosslinking in Lrba-/ - B cells resulted in poor p50 phosphorylation and p65 nuclear localization. Increased levels of Nur77 were detected. Discussion: These results indicate the importance of Lrba in controlling NF-κB activation driven by BCR. Basal activation of NF-κB could impact cellular processes, such as, activation, differentiation, proliferation, and maintenance of B cells after antigen encounter.


Subject(s)
B-Lymphocytes , NF-kappa B , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lipopolysaccharides , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396774

ABSTRACT

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Subject(s)
Eugenol , Pulmonary Embolism , Humans , Mice , Animals , Eugenol/pharmacology , Eugenol/therapeutic use , Eugenol/metabolism , Phospholipase C gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Platelet Activation , Platelet Aggregation , Blood Platelets/metabolism , Phosphorylation , Protein Kinase C/metabolism , Thromboxane A2/metabolism , Collagen/metabolism , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Phospholipases A2, Cytosolic/metabolism
3.
J Cell Mol Med ; 28(4): e18139, 2024 02.
Article in English | MEDLINE | ID: mdl-38334198

ABSTRACT

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Subject(s)
Biflavonoids , Nucleotides, Cyclic , Phospholipases , Humans , Animals , Mice , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Phospholipase C gamma/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Phospholipases/metabolism , Phospholipases/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Activation , Blood Platelets/metabolism , Platelet Aggregation , Protein Kinase C/metabolism , Phosphorylation , Collagen/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166978, 2024 02.
Article in English | MEDLINE | ID: mdl-38061598

ABSTRACT

Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.


Subject(s)
Microglia , Neurodegenerative Diseases , Humans , Brain/metabolism , Immunity, Innate , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Phagocytosis/genetics , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phospholipase C gamma/pharmacology
5.
Cell Rep ; 42(9): 113035, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37616163

ABSTRACT

Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIß (PKD2-PI4KIIIß) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Protein Kinase D2 , Phospholipase C gamma/metabolism , Golgi Apparatus/metabolism , trans-Golgi Network/metabolism , Proto-Oncogene Proteins c-kit/metabolism
6.
Nutrients ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513611

ABSTRACT

Protaetia brevitarsis (PB)-derived bioactive substances have been used as food and medicine in many Asian countries because of their antioxidant, antidiabetic, anti-cancer, and hepatoprotective properties. However, the effect of PB extracts (PBE) on osteoclast differentiation is unclear. In this study, we investigated the effect of PBE on RANKL-induced osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs). To investigate the cytotoxicity of PBE, the viability of BMMs was confirmed via MTT assay. Tartrate-resistant acid phosphatase (TRAP) staining and pit assays were performed to confirm the inhibitory effect of PBE on osteoclast differentiation and bone resorption. The expression levels of osteoclast differentiation-related genes and proteins were evaluated using quantitative real-time PCR and Western blotting. PBE attenuated osteoclastogenesis in BMMs in TRAP and pit assays without cytotoxicity. The expression levels of osteoclast marker genes and proteins induced by RANKL were decreased after PBE treatment. PBE suppressed osteoclastogenesis by inhibiting the RANKL-induced activated JNK/NF-κB/PLCγ2 signaling pathway and the expression of NFATc1 and c-Fos. Collectively, these results suggest that PBE could be a potential therapeutic strategy or functional product for osteoclast-related bone disease.


Subject(s)
Bone Resorption , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Osteogenesis , Phospholipase C gamma/metabolism , Osteoclasts , MAP Kinase Signaling System , Bone Resorption/metabolism , RANK Ligand/metabolism , Cell Differentiation
7.
Mol Neurodegener ; 18(1): 25, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081539

ABSTRACT

BACKGROUND: The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS: We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS: In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION: The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Immune System , Phospholipase C gamma/genetics , SARS-CoV-2
8.
Front Immunol ; 14: 1042686, 2023.
Article in English | MEDLINE | ID: mdl-36761736

ABSTRACT

Neutrophil extracellular traps (NETs) serve to immobilize and kill pathogens, but also can contribute to the progression of several inflammatory and auto-immune diseases, as well as cancer. Whence the importance of elucidating the mechanisms underlying NET formation. In this regard, the PI3K signaling pathway has been shown to be crucial; yet little is known about which of its components are involved. Here, we identified the PI3K isoforms and associated signaling partners that are mobilized in response to different classes of physiological NET inducers (inflammatory cytokines, growth factors, chemoattractants). NET generation was assessed by microscopy and signalling molecule activation by immunoblot using phospho-antibodies. Across the various stimuli, PI3Kα and PI3Kγ isoforms clearly contributed to NET induction, while the participation of other isoforms was stimulus-dependent. Some PI3K isoforms were also found to signal through Akt, the canonical downstream effector of PI3K, while others did not. Downstream of PI3K, mTOR and PLCγ2 were used by all stimuli to control NET generation. Conversely, the involvement of other kinases depended on the stimulus - both TNFα and GM-CSF relied on PDK1 and Akt; and both TNFα and fMLP additionally used S6K. We further established that all PI3K isoforms and downstream effectors act belatedly in NET generation, as reported previously for PI3K. Finally, we revisited the PI3K-PDK1-Akt signaling hierarchy in human neutrophils and again found stimulus-dependent differences. Our data uncover unsuspected complexity and redundancy in the signaling machinery controlling NET formation through the all-important PI3K pathway. Conserved signaling molecules represent therapeutic targets for pathologies involving NETs and in this regard, the existence of drugs currently used in the clinic or undergoing clinical trials (which target PI3K isoforms, mTOR or Akt), underscores the translational potential of our findings.


Subject(s)
Extracellular Traps , Proto-Oncogene Proteins c-akt , Humans , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha
9.
J Alzheimers Dis ; 94(s1): S319-S333, 2023.
Article in English | MEDLINE | ID: mdl-36683512

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disorder involving heterogenous pathophysiological characteristics, which has become a challenge to therapeutics. The major pathophysiology of AD comprises amyloid-ß (Aß), tau, oxidative stress, and apoptosis. Recent studies indicate the significance of Triggering receptor expressed on myeloid cells 2 (TREM2) and its mutant variants in AD. TREM2 are the transmembrane receptors of microglial cells that performs a broad range of physiological cell processes. Phagocytosis of Aß is one of the physiological roles of TREM2, which plays a pivotal role in AD progression. R47H, a mutant variant of TREM2, increases the risk of AD by impairing TREM2-Aß binding. Inconclusive evidence regarding the TREM2 signaling cascade mechanism of Aß phagocytosis motivates the current review to propose a new hypothesis. The review systematically assesses the cross talk between TREM2 and other AD pathological domains and the influence of TREM2 on amyloid and tau seeding. Disease associated microglia (DAM), a novel state of microglia with unique transcriptional and functional signatures reported in neurodegenerative conditions, also depend on the TREM2 pathway for its differentiation. DAM is suggested to have a neuroprotective role. We hypothesize that TREM2, along with its signaling adaptors and endogenous proteins, play a key role in ameliorating Aß clearance. We indicate that TREM2 has the potential to ameliorate the Aß burden, though with differential clearance ability and may act as a potential therapeutic target.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Neurons/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
10.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232674

ABSTRACT

Platelets are crucial for hemostasis and arterial thrombosis, which may lead to severe cardiovascular diseases (CVDs). Thus, therapeutic agents must be developed to prevent pathological platelet activation. Glabridin, a major bioalkaloid extracted from licorice root, improves metabolic abnormalities (i.e., obesity and diabetes) and protects against CVDs and neuronal disorders. To the best of our knowledge, no studies have focused on glabridin's effects on platelet activation. Therefore, we investigated these effects in humans and mice. Glabridin exhibited the highest inhibitory effects on collagen-stimulated platelet aggregation and moderate effects on arachidonic-acid-stimulated activation; however, no effects were observed for any other agonists (e.g., thrombin or U46619). Glabridin evidently reduced P-selectin expression, ATP release, and intracellular Ca2+ ([Ca2+]i) mobilization and thromboxane A2 formation; it further reduced the activation of phospholipase C (PLC)γ2/protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß), mitogen-activated protein kinase (MAPK), and NF-κB. In mice, glabridin reduced the mortality rate caused by acute pulmonary thromboembolism without altering bleeding time. Thus, glabridin effectively inhibits the PLCγ2/PKC cascade and prevents the activation of the PI3K/Akt/GSK3ß and MAPK pathways; this leads to a reduction in [Ca2+]i mobilization, which eventually inhibits platelet aggregation. Therefore, glabridin may be a promising therapeutic agent for thromboembolic disorders.


Subject(s)
Glycyrrhiza , P-Selectin , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Adenosine Triphosphate/metabolism , Animals , Blood Platelets/metabolism , Collagen/metabolism , Flavonoids/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Isoflavones , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , P-Selectin/metabolism , Phenols , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phospholipase C gamma/metabolism , Phosphorylation , Platelet Activation , Platelet Aggregation , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thrombin/metabolism , Thromboxanes/metabolism
11.
Front Cell Dev Biol ; 10: 999061, 2022.
Article in English | MEDLINE | ID: mdl-36147734

ABSTRACT

Alzheimer's disease (AD) is an irreversible neurodegenerative disease mainly characterized by memory loss and cognitive decline. The etiology of AD is complex and remains incompletely understood. In recent years, genome-wide association studies (GWAS) have increasingly highlighted the central role of microglia in AD pathology. As a trans-membrane receptor specifically present on the microglia in the central nervous system, phosphatidylinositol-specific phospholipase C gamma 2 (PLCγ2) plays an important role in neuroinflammation. GWAS data and corresponding pathological research have explored the effects of PLCG2 variants on amyloid burden and tau pathologies that underline AD. The link between PLCγ2 and other AD-related effectors in human and mouse microglia has also been established, placing PLCγ2 downstream of the triggering receptor expressed on myeloid cells 2 (TREM2), toll-like receptor 4 (TLR4), Bruton's tyrosine kinase (BTK), and colony-stimulating factor 1 receptor (CSF1R). Because the research on PLCγ2's role in AD is still in its early stages, few articles have been published, therefore in this paper, we integrate the relevant research published to date, review the structural features, expression patterns, and related pathways of PLCγ2, and summarize the recent studies on important PLCG2 variants related to AD. Furthermore, the possibility and challenge of using PLCγ2 to develop therapeutic drugs for AD are also discussed.

12.
BMC Complement Med Ther ; 22(1): 75, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35300669

ABSTRACT

BACKGROUND: Platelets play an important role in the progression of atherosclerosis and cardiovascular events. The inhibition of platelet function is a main strategy to reduce risk of cardiovascular events. Some studies have shown that tomato extracts inhibit platelet function, but the molecular mechanisms remain unclear. Fruitflow is a water-solute tomato extract and the main ingredients including flavonoids, adenosine, chlorogenic acid, phytosterols, naringenin, and carotenoids. The present study investigated the effects of fruitflow on adenosine diphosphate (ADP)- and collagen- stimulated platelet aggregation, platelet adhesion, and levels of thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (PGF1α), and platelet factor 4 (PF4) and explored the underlying molecular mechanisms. METHODS: Platelet-rich plasma (PRP) was used for measurement of platelet aggregation, TXB2, 6-keto- PGF1α, and PF4 levels. Platelet aggregation was analyzed using a Chrono-Log aggregometer. TXB2, 6-keto- PGF1α, and PF4 levels were determined using enzyme-linked immunosorbent assay kits. Immunoblotting was used to detect protein expression and phosphorylation on washed platelets. Platelet adhesion and spreading were determined by immunofluorescence. RESULTS: Fruitflow (1, 3, 10 and 100 µg/ml) dose-dependently inhibited platelet aggregation that was induced by ADP and collagen. Fruitflow (100 µg/ml) treatment completely suppressed ADP- and collagen-stimulated platelet aggregation. Fruitflow (100 µg/ml) significantly decreased TXB2 and 6-keto-PGF1α generation and PF4 release in ADP- and collagen-stimulated platelets. Treatment with fruitflow effectively blocked collagen-induced platelet spreading. To determine the potential molecule mechanism of action of fruitflow, we investigated the protein expression and phosphorylation of several signaling molecules in collagen-activated platelets. Fruitflow dose-dependently suppressed Akt, Glycogen synthase kinase-3ß (GSK-3ß), spleen tyrosine kinase (Syk) and phospholipase Cγ2 (PLCγ2) and p38 MAPK phosphorylation that was induced by collagen. CONCLUSION: Fruitflow inhibited platelet aggregation and reduced TXB2, 6-keto-PGF1α, and PF4 levels in ADP- and collagen-stimulated platelets. The mechanism of action of fruitflow may be associated with the suppression of Akt/GSK3ß, Syk/PLCγ2, and p38 MAPK phosphorylation in collagen-activated platelets. Fruitflow is a natural product derived from tomato and can be used as a health food for decreasing platelet activity.


Subject(s)
Blood Platelets , Proto-Oncogene Proteins c-akt , Blood Platelets/metabolism , Collagen/metabolism , Collagen/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Phospholipase C gamma/metabolism , Phospholipase C gamma/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Eur J Med Genet ; 65(1): 104387, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34768012

ABSTRACT

Pathogenic variants of PLCG2 encoding phospholipase C gamma 2 (PLCγ2) were first reported in 2012 and their clinical manifestations vary widely. PLCG2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) are representative examples of PLCG2 pathogenic variants. In this report, we describe a 17-year-old male with recurrent blistering skin lesions, B-cell lymphopenia, and asthma. Distinct from the patients in previous reports, this patient had the heterozygous de novo c.2119T > C missense variant (NM_002661.4) resulting in a serine to proline amino acid substitution (p.Ser707Pro). The variant located to the PLCγ2 C-terminal Src homology 2 (cSH2) domain, which is a critical site for the restriction of intrinsic enzyme activity. This variant could be classified as "likely pathogenic" according to American College of Medical Genetics and Genomics guidelines. Laboratory results showed a reduction in circulating B cells without a decrease of serum IgG and IgA. Our findings expand the variety of clinical phenotypes for PLCG2 missense variants.


Subject(s)
B-Lymphocytes , Blister/genetics , Lymphopenia/genetics , Phospholipase C gamma/genetics , Adolescent , Blister/immunology , Humans , Lymphopenia/immunology , Male , Mutation, Missense , Recurrence , Whole Genome Sequencing
14.
Biochem Pharmacol ; 188: 114579, 2021 06.
Article in English | MEDLINE | ID: mdl-33895161

ABSTRACT

Osteolytic diseases, including breast cancer-induced osteolysis and postmenopausal osteoporosis, are attributed to excessive bone resorption by osteoclasts. Spleen tyrosine kinase (SYK) is involved in osteoclastogenesis and bone resorption, whose role in breast cancer though remains controversial. Effects of PRT062607 (PRT), a highly specific inhibitor of SYK, on the osteoclast and breast cancer functionalities are yet to be clarified. This study demonstrated the in vitro inhibitory actions of PRT on the osteoclast-specific gene expression, bone resorption, and osteoclastogenesis caused by receptor activator of nuclear factor kappa B ligand (RANKL), as well as its in vitro suppressive effects on the growth, migration and invasion of breast carcinoma cell line MDA-MB-231, which were achieved through PLCγ2 and PI3K-AKT-mTOR pathways. Further, we proved that PRT could prevent post-ovariectomy (OVX) loss of bone and breast cancer-induced bone destruction in vivo, which agreed with the in vitro outcomes. In conclusion, our findings suggest the potential value of PRT in managing osteolytic diseases mediated by osteoclasts.


Subject(s)
Breast Neoplasms/enzymology , Cyclohexylamines/therapeutic use , Osteolysis/enzymology , Ovariectomy/adverse effects , Pyrimidines/therapeutic use , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Animals , Bone Resorption/enzymology , Bone Resorption/pathology , Bone Resorption/prevention & control , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Cell Line, Tumor , Cyclohexylamines/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Osteolysis/pathology , Osteolysis/prevention & control , Pyrimidines/pharmacology
15.
Arch Oral Biol ; 122: 105029, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33387850

ABSTRACT

OBJECTIVE: The flower of chrysanthemum, used worldwide as a medicinal and edible product, has shown various bioactivities, such as anti-inflammatory, antioxidant, anti-tumorigenic, and hepatoprotective activities, as well as cardiovascular protection. However, the effect of Chrysanthemum morifolium Ramat. on the regulation of osteoclast differentiation has not yet been reported. In this study, we aimed to investigate the inhibitory effect of Chrysanthemum morifolium Ramat. water extract (CME) on RANKL-induced osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). STUDY DESIGN: Bone marrow-derived macrophages (BMMs) isolated from the C57BL/6 J mice. The viability of BMMs was detected with MTT assays. Inhibitory effects of CME on osteoclast differentiation and bone resorption was measured by TRAP staining and Pit assay. Osteoclast differentiation-associated gene expression were assessed by Real-time quantitative polymerase chain reaction. Intracellular signaling molecules was assessed by western blot. RESULTS: CME significantly inhibited osteoclast differentiation in BMMs without cytotoxicity, besides inhibiting MAPK/c-fos and PLCγ2/CREB activation. The inhibitory effects of CME on differentiation-related signaling molecules resulted in significant repression of NFATc1 expression, which is a key transcription factor in osteoclast differentiation, fusion, and activation. CONCLUSION: Our results confirmed the inhibition of RANKL-induced PLCγ2/CREB/c-fos/NFATc1 activation by CME during osteoclast differentiation. The findings collectively suggested CME as a traditional therapeutic agent for osteoporosis, RA, and periodontitis.


Subject(s)
Bone Resorption , Cell Differentiation/drug effects , Chrysanthemum/chemistry , Osteoclasts/drug effects , Plant Extracts/pharmacology , RANK Ligand/metabolism , Animals , Bone Marrow Cells , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Proto-Oncogene Proteins c-fos/metabolism
16.
Int J Biol Macromol ; 165(Pt B): 2219-2230, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33132123

ABSTRACT

Spectroscopic analysis of HPLC-purified 7.3-kD Acorus tatarinowii Schott root polysaccharide ASP2-1 (FT-IR, NMR) revealed respective monosaccharide proportions of glucose: galactose: arabinose: xylose: galacturonic acid: mannose: rhamnose: glucuronic acid:fucose of 49.1:16.0:11.6:10.2:5.3:2.9:2.2:1.7:0.8. In vitro, ASP2-1 inhibited osteoclastogenesis-associated bone resorption, RANKL-induced osteoclastogenesis and F-actin ring formation and suppressed osteoclastogenesis-associated gene expression (e.g., TRAP, OSCAR, Atp6v0d2, αV, ß3, MMP9 and CtsK) as shown via RT-PCR. ASP2-1-treated RANKL-stimulated bone marrow-derived macrophages exhibited decreased levels of NFATc1 and c-Fos mRNAs and corresponding transcription factor proteins, elevated expression of negative NFATc1 regulators (Mafb, IRF8, Bcl6) and reduced their upstream negative regulator (Blimp1) expression. ASP2-1 inhibition of NFATc1 expression involved PLCγ2-Ca2+ oscillation-calcineurin axis suppression, reflecting suppression of RANKL-induced PLCγ2 activation (and associated Ca2+ oscillation) and calcineurin catalytic subunit PP2BAα expression without inhibiting NF-κB and MAPKs activation or phosphorylation. Staining (H&E, TRAP) and micro-CT assays revealed ASP2-1 attenuated bone destruction and osteoclast over-activation and improved tibia micro-architecture in a murine LPS-induced bone loss model. Thus, ASP2-1 may alleviate inflammatory bone loss-associated diseases.


Subject(s)
Acorus/chemistry , Bone Resorption/chemically induced , Bone Resorption/drug therapy , NFATC Transcription Factors/metabolism , Osteogenesis/drug effects , Polysaccharides/therapeutic use , Actins/metabolism , Animals , Biomarkers/metabolism , Calcium/metabolism , Chemical Phenomena , Disease Models, Animal , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides , Macrophages/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Phospholipase C gamma/metabolism , Phosphorylation/drug effects , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , RANK Ligand/metabolism , Spectroscopy, Fourier Transform Infrared
17.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32646046

ABSTRACT

Platelets are major players in the occurrence of cardiovascular diseases. Auraptene is the most abundant coumarin derivative from plants, and it has been demonstrated to possess a potent capacity to inhibit platelet activation. Although platelets are anucleated cells, they also express the transcription factor, nuclear factor-κB (NF-κB), that may exert non-genomic functions in platelet activation. In the current study, we further investigated the inhibitory roles of auraptene in NF-κB-mediated signal events in platelets. MG-132 (an inhibitor of proteasome) and BAY11-7082 (an inhibitor of IκB kinase; IKK), obviously inhibited platelet aggregation; however, BAY11-7082 exhibited more potent activity than MG-132 in this reaction. The existence of NF-κB (p65) in platelets was observed by confocal microscopy, and auraptene attenuated NF-κB activation such as IκBα and p65 phosphorylation and reversed IκBα degradation in collagen-activated platelets. To investigate cellular signaling events between PLCγ2-PKC and NF-κB, we found that BAY11-7082 abolished PLCγ2-PKC activation; nevertheless, neither U73122 nor Ro31-8220 had effect on NF-κB activation. Furthermore, both auraptene and BAY11-7082 significantly diminished HO• formation in activated platelets. For in vivo study, auraptene prolonged the occlusion time of platelet plug in mice. In conclusion, we propose a novel inhibitory pathway of NF-κB-mediated PLCγ2-PKC activation by auraptene in human platelets, and further supported that auraptene possesses potent activity for thromboembolic diseases.


Subject(s)
Arteries/drug effects , Blood Platelets/drug effects , Coumarins/pharmacology , NF-kappa B/antagonists & inhibitors , Platelet Activation/drug effects , Thrombosis/prevention & control , Animals , Arteries/metabolism , Blood Platelets/metabolism , Humans , I-kappa B Kinase/metabolism , Mice , Phospholipase C gamma/metabolism , Phosphorylation/drug effects , Platelet Aggregation/drug effects , Protein Kinase C/metabolism , Signal Transduction/drug effects , Thrombosis/metabolism
18.
J Clin Immunol ; 40(7): 987-1000, 2020 10.
Article in English | MEDLINE | ID: mdl-32671674

ABSTRACT

Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.


Subject(s)
Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Mutation , Phospholipase C gamma/genetics , Adolescent , Agammaglobulinemia/therapy , Autoimmunity/genetics , Biomarkers , Caspase 1/metabolism , Child , Cytokines/metabolism , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , Hereditary Autoinflammatory Diseases/therapy , Humans , Inflammasomes/metabolism , Male , Pedigree , Phenotype , Phospholipase C gamma/chemistry , Phospholipase C gamma/metabolism , Structure-Activity Relationship
19.
J Ginseng Res ; 44(1): 24-32, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32095094

ABSTRACT

Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.

20.
J Clin Immunol ; 40(2): 267-276, 2020 02.
Article in English | MEDLINE | ID: mdl-31853824

ABSTRACT

We report three new cases of a germline heterozygous gain-of-function missense (p.(Met1141Lys)) mutation in the C2 domain of phospholipase C gamma 2 (PLCG2) associated with symptoms consistent with previously described auto-inflammation and phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) syndrome and pediatric common variable immunodeficiency (CVID). Functional evaluation showed platelet hyper-reactivity, increased B cell receptor-triggered calcium influx and ERK phosphorylation. Expression of the altered p.(Met1141Lys) variant in a PLCγ2-knockout DT40 cell line showed clearly enhanced BCR-triggered influx of external calcium when compared to control-transfected cells. Our results further expand the molecular basis of pediatric CVID and phenotypic spectrum of PLCγ2-related defects.


Subject(s)
B-Lymphocytes/immunology , Common Variable Immunodeficiency/diagnosis , Germ-Line Mutation/genetics , Immunologic Deficiency Syndromes/diagnosis , Mutation, Missense/genetics , Phospholipase C gamma/genetics , Autoimmunity/genetics , Calcium Signaling , Cell Line , Child , Child, Preschool , Female , Humans , Infant , Male , Phenotype , Protein Domains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL