Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; : 176123, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39250967

ABSTRACT

p-Phenylenediamines (PPDs) and PPD-derived quinones (PPD-Qs) have been considered emerging pollutants recently. Their available data on sediment and sewage sludge are limited, especially the ecological risks. Here, typical PPDs and PPD-Qs were measured in the sludge of wastewater treatment plants and surface sediment of a developed river basin (including reservoirs, estuaries, and rivers) and deep-sea troughs. The total concentrations of PPDs (∑PPD) were highest in sludge (range: 9.06-248 ng g-1), followed by surface sediment of the Dongjiang River basin, China (3.33-85.3 ng g-1), and lowest in sediment of the Okinawa Trough (0.01-7.46 ng g-1). The median value of ∑PPD in surface sediment of rivers (9.54 ng g-1) was higher than those in reservoirs (4.28 ng g-1) and estuaries (5.26 ng g-1). N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) was the major congener in all samples, accounting for over 60 % of ∑PPD. For quinones, 6PPD-Q and IPPD-Q were frequently detected in sludge, only trace 6PPD-Q was detected in the sediment of estuaries (nd-0.62 ng g-1) and rivers (nd-5.24 ng g-1), and both of them were absent from the sediment of the Okinawa Trough. The occurrence of PPDs in the trough may be the in-situ release of microplastics, and due to the low-light and weak alkaline conditions of deep-sea water, quinones may hardly photodegrade from PPDs. The PPD concentrations in sludge were positively correlated with local GDP, and the annual PPD emission from sludge will exceed 1370 kg in China. The results of ecological risk assessments indicated low risks for PPDs in sludge-amended soil, median risks for several PPDs in river sediment, but median to high risks for 6PPD-Q contamination sludge-amended soil. For the first time, we reported the occurrence of PPDs and related quinones in the sludge of WWTPs and found a potential environmental risk from 6PPD-Q in sludge used as a soil conditioner.

2.
Environ Sci Technol ; 58(29): 13056-13064, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38900493

ABSTRACT

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.


Subject(s)
Rain , Rubber , Cities , Water Pollutants, Chemical/analysis , Environmental Monitoring , China
3.
Environ Sci Technol ; 57(7): 2779-2791, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36758188

ABSTRACT

Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.


Subject(s)
Antioxidants , Benzoquinones , Phenylenediamines , Rubber , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/classification , Phenylenediamines/analysis , Phenylenediamines/chemistry , Phenylenediamines/classification , Rubber/chemistry , Benzoquinones/analysis , Benzoquinones/chemistry , Benzoquinones/classification , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry
4.
Environ Sci Technol ; 57(6): 2393-2403, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36720114

ABSTRACT

p-Phenylenediamines (PPDs) are widely used as antioxidants in tire rubber, and their derived quinone transformation products (PPD-Qs) may pose a threat to marine ecosystems. A compelling example is N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD)-derived quinone, called 6PPD-Q, as the causal toxicant for stormwater-linked acute mortality toward coho salmon. However, the knowledge of the co-occurrences of PPDs and PPD-Qs and their transport from freshwater to oceanic waterbodies on a large geographical scale remains unknown. Herein, we performed the first large-scale survey of these chemicals in sediments across urban rivers, estuaries, coasts, and deep-sea regions. Our results demonstrated that seven PPDs and four PPD-Qs are ubiquitously present in riverine, estuarine, and coastal sediments, and most of them also occur in deep-sea sediments. The most dominant chemicals of concern were identified as 6PPD and 6PPD-Q. Total sedimentary concentrations of PPDs and PPD-Qs presented a clear spatial trend with decreasing levels from urban rivers (medians: 39.7 and 15.2 ng/g) to estuaries (14.0 and 5.85 ng/g) and then toward coasts (9.47 and 2.97 ng/g) and deep-sea regions (5.24 and 3.96 ng/g). Interestingly, spatial variation in the ratios of 6PPD to 6PPD-Q (R6PPD/6PPD-Q) also presented a clear decreasing trend. Our field measurements implied that riverine outflows of PPDs and PPD-Qs may be an important route to transport these tire rubber-derived chemicals to coastal and open oceans.


Subject(s)
Benzoquinones , Geologic Sediments , Phenylenediamines , Water Pollutants, Chemical , Environmental Monitoring/methods , Estuaries , Geologic Sediments/chemistry , Phenylenediamines/analysis , Rivers/chemistry , Rubber/chemistry , Water Pollutants, Chemical/analysis , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL